您的当前位置:首页正文

The Harmonic and Sideband Structure of the Kilohertz Quasi-Periodic Oscillations in Sco X-1

来源:独旅网
Mon.Not.R.Astron.Soc.000,1–5(2000)Printed1February2008

A(MNLTEXstylefilev1.4)

TheHarmonicandSidebandStructureoftheKilohertz

Quasi-PeriodicOscillationsinScoX-1

MarianoM´endez1,2andMichielvanderKlis1

1

AstronomicalInstitute‘AntonPannekoek’,UniversityofAmsterdamandCenterforHigh-EnergyAstrophysics,Kruislaan403,NL-1098SJAmsterdam,TheNetherlands.2FacultaddeCienciasAstron´omicasyGeof´ısicas,UniversidadNacionaldeLaPlata,PaseodelBosqueS/N,1900LaPlata,Argentina.

arXiv:astro-ph/0006243v1 19 Jun 2000Accepted2000June.Received2000February28;inoriginalform2000February28

ABSTRACT

WeusedatafromtheRossiX-rayTimingExplorertosearchforharmonicsandside-bandsofthetwosimultaneouskilohertzquasi-periodicoscillations(kHzQPOs)inScoX-1.Wedonotdetectanyoftheseharmonicsorsidebands,with95%confidenceupperlimitstotheirpowerbetween∼1%and∼10%ofthepoweroftheupperkHzQPO.Theoscillationsproducedatthesefrequenciesmaybeattenuatedinascatteringcoronaaroundtheneutronstar.Wefindthatupperlimitstotheunattenuatedpowerofsomeofthestrongesttheoreticallypredictedharmonicsandsidebandsareaslowas∼2%oftheunattenuatedpowerofthehigh-frequencyQPOinScoX-1.

Keywords:accretion,accretiondiscs–stars:neutron–stars:ScoX-1–X-rays:stars

1INTRODUCTION

Itisfouryearsnowsincethekilohertzquasi-periodicoscil-lations(kHzQPOs)werediscoveredinthepersistentfluxofScorpiusX-1(vanderKlisetal.1996a)and4U1728–34(Strohmayer,Zhang&Swank1996).Inthemeantime,sim-ilarkHzQPOshavebeenseeninsome20otherlow-massX-raybinaries(LMXBs;seevanderKlis2000forareview).TheseQPOsoftenappearinpairs,withfrequenciesν1andν2(ν2>ν1)between∼400and∼1300Hz,whichinagivensourcecanshiftbyafewhundredHz,apparentlyasafunctionofmassaccretionrate.

MostofthemodelsproposedsofarassumethatoneofthekHzQPOsreflectstheKeplerianorbitalmotionatsomepreferredradiusintheaccretiondisc(e.g.,Miller,Lamb&Psaltis1998;Stella&Vietri1999;Osherovich&Titarchuk1999),butthereareotherexplanationsaswell(Kleinetal.1996a,b;Jernigan,Klein&Arons2000).Inrecentdis-cussions(Lamb&Miller1999;Stella1999;Psaltis1999)itwasemphasizedthatempiricaldiscriminationbetweentwooftheleadingclassesofmodelsispossibleinprinciplebystudyingtheharmonicandsidebandstructureofthekHzQPOs.Hereweconcentrateonlyonthesetwomodelclasses

Inthe‘sonic-point’model(SPM;Milleretal.1998),theQPOatν2(theupperQPO)isproducedattheradiuswheretheradialflowvelocityinthediscturnsfromsubsonictosupersonic(thesonicradius),andtheQPOatν1(thelowerQPO)originatesbyabeatbetweentheupperQPOandthespinfrequencyoftheneutronstar.Inthe‘relativistic-precession’model(RPM;Stella&Vietri1999)theQPOat

c2000RAS󰀂

ν2isalsoassumedtobeKeplerian,buttheQPOatν1is

producedbytheapsidalprecessionofaslightlynon-circularinneraccretiondisc.TheQPOfrequenciesintheRPMarecalculatedfortestparticlesinpurelygeodesicrelativisticmotion,i.e.,neglectingthehydrodynamicalandradiativeeffectsoftheaccretionflow.However,Psaltis&Norman(2000)haverecentlyproposedadynamicalmodelinwhichtheQPOsareproducedbyoscillationsintheaccretiondisk.Inthismodel,whichwewillcall‘transition-radius’model(TRM),thereisatransitionradiusintheaccretiondiscthatactsasaband-passfilterwithresonancesneartheorbitalandperiastron-precessionfrequencies.

Besidesthemainpeaksatν1andν2,theSPMandtheTRMpredictother(weaker)harmonicsandsidebandsoftheseQPOs,atspecificfrequencies.Forinstance,theSPMpredictsarelativelystrongharmonicofthelowerQPOat2ν1(seeTable3ofMilleretal.1998foralistofotherside-bandpeakspredictedbytheSPM),whereastheTRMpre-dictsasidebandat2ν2−ν1(cf.eq.[29]inPsaltis&Norman2000).Inprinciple,thedetectionofaQPOat2ν1andanon-detectionofaQPOat2ν2−ν1wouldtendtoruleouttheTRM,whereasthedetectionofaQPOat2ν2−ν1andanon-detectionofaQPOat2ν1wouldtendtoruleouttheSPM(Miller2000).InthisLetter,weusedatafromtheRossiX-rayTimingExplorer(RXTE)tosearchforthepredictedharmonicsandsidebandsinthepowerspectrumofthekHzQPOsourceScoX-1.Becauseofitsveryhighflux,ScoX-1hasextremelysignificantkHzQPOs,andhenceaverysensitivestudyof

2M.M´endezandM.vanderKlis

anyharmonicstructureispossible.WedonotdetectanyofthesesecondaryQPOs.ThefactthatwedetectthekHzQPOsatν1andν2,butnoneoftheseotherpeakssetssevereconstraintsonthemodelscurrentlyproposedtoexplainthekHzQPOsinLMXBs.

2OBSERVATIONS

WeuseddatafromtheProportionalCounterArray(PCA;Jahodaetal.1996)onboardRXTE(Bradt,Rothschild&Swank1993)takenon1996February14,18,19,1996May24–28,1997March15,1997April18–24,1997August22,1998January2–8,1998February27,28,1998May30,31,1998June1,2,1998July2–5,1999January6,8–11and13–16.Eachobservation(i.e.,eachpartofthedatawithauniqueRXTEIDnumber)consistsofdatablocksof∼60sto∼3,700sinterruptedbypassagesofthesatellitethroughtheSouthAtlanticAnomalyandoccultationsofthesourcebytheEarth.Thetotalusabletimewas∼630ks.

Toavoiddetectorsafetytriggers,telemetrysaturation,andtoreducethedead-timeeffectsproducedbythehighcountrateofScoX-1,someobservationswerecarriedoutwiththesourceslightlyoff-axis,withsomeofthefivepro-portionalcounterunitsofthePCAswitchedoff,recordingonlyphotonsdetectedbytheupperanodechainofthePCA,recordingonlyphotonsfromalimitedenergyrange,orus-ingacombinationoftheseconstraints.Inallcases,high-timeresolutiondatawereavailablewithatimeresolutionof0.25msorbetter.Forouranalysisbelowwecombinedalltheavailabledata,irrespectiveofwhethertheywerecollectedusinganyoftheaboveobservationalconstraints.Whensin-gleanddouble-eventdatawererecordedinparallel(seevanderKlisetal.1996b),wecombinedthemoff-linetoenhancethesensitivity.

3ANALYSISANDRESULTS

Wedividedthehightimeresolutiondatainto16ssegments,andproducedapowerspectrumforeachofthesesegmentsuptoaNyquistfrequencyof2048Hz(for∼50%ofthedatawealsoproducedpowerspectrauptoaNyquistfrequencyof4096Hz).For69%oftheobservationsthepowerspectrawerecalculatedusingthefullPCAenergyband.Fortherestofthepowerspectraweuseddatafromselectedenergybands(24%ofthepowerspectrawerecalculatedbetween5−18keV,5%between5−60keV,and2%between2−18keV)becausewefoundthatthekHzQPOsweremoresignificantinthoseenergybands,orbecausethoseweretheonlyenergybandsavailable.Finally,weaveragedtogethergroupsof8contiguous16spowerspectratoproduceaveragepowerspectra.

WesearchedtheseaveragepowerspectraforkHzQPOs,atfrequencies>∼250Hz.WedidthisbyfirstidentifyingthosepowerspectrathatshowedastrongQPO,andvisuallyes-timatingitsfrequency,ν0.WhentwoQPOswerepresentinthepowerspectra,wealwayspickedtheoneathigherfre-quency.ItturnedoutthatinthecaseswhereonlyonekHzQPOwasvisible,itwasalwaystheupperkHzQPO(seebe-low).Wethenfittedthepowerspectra,intherangeν0−100Hztoν0+100Hz,usingafunctionconsistingofaconstant,

Figure1.ThefrequencyseparationbetweenthekHzQPOsinScoX-1asafunctionoftheupperkHzQPOfrequency.

apowerlawandoneLorentzian.WediscardedthepowerspectraforwhichtheQPOswerelessthan3σsignificant.WenotethatinthismannerwemighthavediscardeddatawithweakQPOsthatcouldhavebeendetectedaveragingtogethermoredata.Therewere1,384averagepowerspectrawithsignificantkHzQPOs,equivalentto177,152sofdata.

ForthoseobservationswherewedetectedonlyoneQPOintheaveragepowerspectraweappliedthe‘shift-and-add’technique(M´endezetal.1998a)totryanddetectthesec-ondQPO:BasedonthefrequencyofthedetectedQPO,wealignedandaveragedallthepowerspectraofasingleobser-vation.Inthosecases,thisprocedurerevealedasecondkHzQPO,whichinallcaseswasatalowerfrequencythantheQPOpeakthatweusedtoalignthepowerspectra,show-ingthatalltheinitialfrequencymeasurementsinthe1,384averagepowerspectracorrespondedtotheupperkHzQPO.

Next,wemeasuredthefrequencyseparationbetweenthekHzQPOsasafunctionoftheupperQPOfrequency,ν2.Weproceededasfollows:Wealignedthe1,384powerspectrausingtheupperkHzQPOasareference;wegroupedthedatain49sets,eachofthemcontaining∼40to∼210powerspectra,suchthatν2didnotvarybymorethan5−10Hzwithineachset,andwecombinedthesealignedspectratoproduceanaveragepowerspectrumforeachset.Wefittedthese49powerspectraintherange400−1300Hzusingafunctionconsistingofaconstant,apowerlawandtwoLorentzians.Thefitsweregood,withreducedχ2≤1.1for279degreesoffreedom,andthesignificanceofbothpeakswasalways>3σ.

Fig.1showsthat∆ν=ν2−ν1,thefrequencydifferencebetweenthetwoQPOs,decreasesfrom∼310Hzto∼240Hz,asν2increasesfrom∼840Hzto∼1100Hz.Thisfigurecanbecomparedtofig.3aofvanderKlisetal.(1997),whofirstreportedthedecreasein∆νwithν2inScoX-1.Becauseweincludedmoredata,andbecauseweusedtheshift-and-addtechniquetomeasure∆ν,theerrorsaresmallerinthepresentfigurethaninthepreviousone,andsomestructure,particularlybetween900and1020Hz,becomesapparent(perhapsthisstructureisrelatedtothe‘bump’seeninthe

󰀂

c2000RAS,MNRAS000,1–5Figure2.Shifted-and-averagedpowerspectraofScoX-1.TheaveragepowerspectrumshownintheleftpanelwascomputedbyfirstaligningtheindividualpowerspectrasuchthataQPOpeakat2ν1wouldalwaysendupat1320Hz,indicatedbythearrow.IntherightpanelaQPOpeakat2ν2−ν1wouldsimilarlyendupat1284Hz(arrow).Inbothpanels,theverticallinesshowthefrequencyrangeusedtofitthedata(seetext).NoticethatthefrequencyalignmentalsoalteredtheapparentshapesandfrequenciesofthestrongQPOpeaks.

plotof∆νvs.ν1of4U1608–52atν1∼700Hz;seefig.3inM´endezetal.1998b).

FromFig.1wecanreadoffν1asafunctionofν2;be-causewealreadyknowν2foreachaveragepowerspectrum,wecancalculatetheexpectedfrequenciesofhypotheticalsignalsatmultiplesofν1andν2,oratfrequenciesthatarecombinationsofthesetwofrequencies,foreachpowerspec-trum.Aswedescribedin§1,someofthesefrequenciesareimportantinthecontextofthemodelsproposedtoexplainthekHzQPOs.

Wecalculatedthefollowingquantities:2ν1,2ν2,ν2−ν1,ν2+ν1,2ν1−ν2,2ν2−ν1,2ν1+ν2,2ν2+ν1and2(ν2−ν1).Wethenaligned,inturn,thepowerspectraoneachoftheabovefrequencies,andaveragedthemtogethertotryanddetectasignalpresentatanyofthesefrequencies.Wefit-tedtheseshiftedandaveragedpowerspectrainasegmentof∼400Hzthatincludedtheexpectedfrequency,usingaconstantplusaLorentzianwiththecentroidfixedineachcaseattheexpectedfrequency,andwithafixedFWHMof200Hz,approximatelyequaltothesumoftheFWHMofeachoftheQPOs(vanderKlisetal.1996b).ThisvalueisabouttwotimeslargerthanthelargestFWHMmea-suredintheQPOsofthisandothersources,andyieldsconservativeupperlimitstotheunobservedharmonicsandsidebands;tighterupperlimitscouldbeobtainedbyfixingtheFWHMtoasmallervalue.NodetectionsresultfromchoosingasmallerFWHMinthecurrentdataset.Inafewcasesweaddedapowerlawtothefittotakeaccountofaslopingcontinuum.Theshapeofthepowerspectrumathighfrequenciesisdominatedbydead-timeeffects(Zhangetal.1995)which,inthecaseofScoX-1atacountratethatexceeds∼25,000cs−1PCU−1,arelargeandnotyetsufficientlywellunderstoodtopredicttheshapeofthehigh-frequencypartofthepowerspectrumaccurately.Wenotethatabetterknowledgeofthiseffectcouldyieldtighterupperlimitsthanthosethatwereportinthispaper.

WedidnotdetectasignificantQPOatanyoftheabovefrequencies.Asanexample,inFig.2weshowtwopower

kHzQPOsinScoX-13

Table1.Upperlimitstotheobservedamplitudesoftheharmon-icsandsidebandsofthekHzQPOsinScoX-1Frequency

Predictedfrequencyrange

Upperlimita

2ν11090–1690Hz0.122ν21690–2170Hz0.13ν2−ν1240–300Hz0.30ν2+ν11390–1930Hz0.082ν1−ν2240–600Hz0.262ν2−ν11140–1330Hz0.122ν1+ν21930–2770Hz0.102ν2+ν12230–3020Hz0.102(ν2−ν1)

480–600Hz

0.21

a

95%confidenceupperlimitstothermsfractionalamplitudeoftheQPOattheindicatedfrequency,inunitsoftheobservedrmsfractionalamplitudeoftheQPOatν2.ThisQPOhasanamplitudebetween0.6%and2.5%(vanderKlisetal.1997).

spectrathatwereshiftedto2ν1andto2ν2−ν1,thefre-quenciesofthemainhigh-frequencypeaks(besidesthekHzQPOs)predictedbythemodelsofMilleretal.(1998)andPsaltis&Norman(2000),respectively.

UpperlimitsareshowninTable1.TocalculatetheseupperlimitswevariedtheamplitudeoftheLorentzianun-tiltheχ2ofthefitincreasedby2.71withrespecttothebest-fittingvalue(95%confidencelevelforasingleparam-eter);theupperlimitswequoteinTable1representthechangeintheamplitudeforthischangeintheχ2.Becauseoftheobservationalconstraintsdescribedin§2,andbecausewecombinedpowerspectracomputedfromdataindifferentenergybands,wecannotgiveupperlimitsinunitsoffrac-tionalrmsamplitude(vanderKlis1995);instead,alltheupperlimitsinTable1areinunitsoftheobservedfrac-tionalrmsamplitudeoftheQPOatν2.Anypeaksatthepredictedfrequenciesarebetween11and156timesweakerthanthepeakatν2,whichtranslatesintormsamplituderatiosbetween0.08and0.30.

4DISCUSSION

WehavemeasuredthefrequenciesofthetwosimultaneouskHzQPOs,ν1andν2,inScoX-1inalargedataset.Wehaveusedthesemeasurementstocalculatetheexpectedfrequen-ciesofhypotheticalsignalsatharmonicsandsidebandsoftheseQPOs,aspredictedbytwoclassesofkHzQPOmodels.WeusedasensitivetechniquetosearchfortheseharmonicsandsidebandsinthepowerspectraofScoX-1,butnonewasdetected.Theirpowerisbetween10and100timeslessthanthepoweroftheupperkHzQPO(95%confidence).

Oscillationsproducedclosetothesurfaceoftheneutronstarcanbeattenuatedinascatteringcorona.Theattenu-ationisgenerallylargerforoscillationsproducedbyapen-cilbeamsweepingthesurroundings(beamingoscillations),thanforoscillationsduetoactualchangesoftheluminositywithtime(luminosityoscillations;Brainerd&Lamb1987;Kylafis&Klimis1987;Kylafis&Phinney1989;Milleretal.1988).Theattenuationfactor(theratiooftheamplitudeA∞oftheoscillationsatinfinitytotheiroriginalamplitudeA0)asafunctionoffrequencyν,forascatteringcoronaofaradiusRandopticaldepthτisgivenby:A∞,lum

4M.M´endezandM.vanderKlis

[H]

Table2.UpperlimitstotheunattenuatedamplitudeoftheharmonicsandsidebandsofthekHzQPOsinScoX-1

Frequency

2ν12ν2ν2−ν1ν2+ν12ν1−ν22ν2−ν12ν1+ν22ν2+ν12(ν2−ν1)

a

τa<16.5<15.7<1<17.37.8<1R(km)a

336202<10262<10352167151<10Upperlimitb

0.150.270.300.110.260.140.370.540.21τa8.79.8<19.1<18.39.810.2<1R(km)a

129109<10121<10138109103<10Upperlimitc

0.300.930.300.350.260.231.432.160.21

OpticaldepthandradiusofapossiblescatteringcloudaroundScoX-1,obtainedbyminimizingeq.[3]ateachfrequency(seetext).

ThesearethevaluesthatwereusedtocalculatethecorrespondingupperlimitsshowninthisTable.

bUpperlimitsfortheunattenuatedamplitudeoftheQPOattheindicatedfrequencyforaluminosityoscillation(seeeq.[1]),inunits

oftheunattenuatedamplitudeoftheQPOatν2.

cUpperlimitsfortheunattenuatedamplitudeoftheQPOattheindicatedfrequencyforabeamingoscillation(seeeq.[2]),inunitsof

theunattenuatedamplitudeoftheQPOatν2.

InbothcasestheQPOatν2isassumedtobeabeamingoscillation(Milleretal.1998)

foraluminosityoscillation,andbyA∞,beam

1+τ

+e−τ,

(2)

forabeamingoscillation,withx=(3πνRτ/c)1/2(Kylafis&Phinney1989).

WecanusetheserelationstocalculatethelargestunattenuatedamplitudesallowedbythedatainTable1.BecauseateachfrequencytheupperlimitontheratioofobservedamplitudesisA∞,y(ν)/A∞,beam(ν2)(Table1),theupperlimitontheratioofunattenuatedamplitudesA0,y(ν)/A0,beam(ν2),canbeobtainedbyminimizingαy(ν)=

A∞,y(ν)/A0,y(ν)

kHzQPOsinScoX-1

KleinR.I.,AronsJ.,JerniganJ.G.,HsuJ.,1996a,ApJ,457,

L85

KleinR.I.,JerniganJ.G.,AronsJ.,MorganE.H.,ZhangW.,

1996b,ApJ,469,L119

KylafisN.D.,KlimisG.S.,1987,ApJ,323,678

KylafisN.D.,PhinneyE.S.,1989,inTimingNeutronStars,ed.

¨H.Ogelman&E.P.J.vandenHeuvel,NATOASISeriesC262,p.27

LambF.K.,MillerM.C.,1999,paperpresentedatthe1999As-penSummerWorkshoponX-rayProbesofRelativisticAs-trophysicsM´endezM.,etal.,1998a,ApJ,494,L65M´endezM.,vanderKlisM.,WijnandsR.,FordE.C.,van

ParadijsJ.,VaughanB.A.,1998b,ApJ,505,L23

MillerM.C.,2000,inProc.oftheBolognaConf.“X-rayAstron-omy1999:StellarEndpoints,AGN,andtheDiffuseX-rayBackground”,inpress

MillerM.C.,LambF.K.,PsaltisD.,1998,ApJ,791OsherovichV.,TitarchukL.,1999,ApJ,522,L113

PsaltisD.,1999,paperpresentedatthe1999AspenSummer

WorkshoponX-rayProbesofRelativisticAstrophysicsPsaltisD.,NormanC.,2000,ApJ,inpress

StellaL.,1999,paperpresentedatthe1999AspenSummerWork-shoponX-rayProbesofRelativisticAstrophysicsStellaL.,VietriM.,1999,PRL,82,17

StrohmayerT.,ZhangW.,SwankJ.,1996,IAUCirc.6320

vanderKlisM.,1995,inX-rayBinaries,eds.W.H.G.Lewin,J.

vanParadijs&E.P.J.vandenHeuvel(Cambridge:CambridgeUniv.Press)p.252

vanderKlisM.,2000,ARA&Ainpress(astro-ph/0001167)

vanderKlisM.,SwankJ.,ZhangW.,JahodaK.,MorganE.,

LewinW.,VaughanB.,vanParadijsJ.,1996a,IAUCirc.6319

vanderKlisM.,SwankJ.H.,ZhangW.,JahodaK.,MorganE.

H.,LewinW.H.G.,VaughanB.,vanParadijsJ.,1996b,ApJ,469,L1

vanderKlisM.,WijnandsR.A.D.,HorneK.,ChenW.,1997,

ApJ,481,L97

VaughanB.A.,etal.,1997,ApJ,483,L115VaughanB.A.,etal.,1998,ApJ,509,L145

ZhangW.,JahodaK.,SwankJ.H.,MorganE.H.,Giles,A.B.,

1995,ApJ,449,930

5

ThispaperhasbeenproducedusingtheRoyalAstronomical

ASociety/BlackwellScienceLTEXstylefile.

c2000RAS,MNRAS000,1–5󰀂

因篇幅问题不能全部显示,请点此查看更多更全内容