您的当前位置:首页正文

红外光谱分析

2021-02-24 来源:独旅网
红外光谱分析

红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。

红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。

由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。

分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库, 人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。

下面将对红外光谱分析的基本原理做一个简单的介绍。

红外吸收光谱是物质的分子吸收了红外辐射后,引起分子的振动-转动能级的跃迁而形成的光谱,因为出现在红外区,所以称之为红外光谱。利用红外光谱进行定性定量分析的方法称之为红外吸收光谱法。

红外辐射是在 1800年由英国的威廉.赫谢(Willian Hersher) 尔发现的。一直到了1903年,才有人研究了纯物质的红外吸收光谱。 二次世界大战期间,由于对合成橡胶的迫切需求,红外光谱才引起了化学家的重视和研究,并因此而迅速发展。随着计算机的发展,以及红外光谱仪与其它大型仪器的联用,使得红外光谱在结构分析、化学反应机理研究以及生产实践中发挥着极其重要的作用,是“四大波谱”中应用最多、理论最为成熟的一种方法。 红外光谱法的特点:

1• 气态、液态和固态样品均可进行红外光谱测定;

2• 每种化合物均有红外吸收,并显示了丰富的结构信息; 3• 常规红外光谱仪价格低廉,易于购置; 4• 样品用量少:可减少到微克级;

5. 针对特殊样品的测试要求,发展了多种测量新技术,如:光声光谱( PAS)、衰减反射光谱(ATR),漫反射,红外显微镜等。

第一节 红外光谱分析基本原理

一. 红外吸收与振动 - 转动光谱

1. 光谱的产生:

分子中基团的振动和转动能级跃迁产生振-转光谱,称红外光谱。 2. 所需能量:

近红外(14000-4000cm-1),中红外(4000-400cm-1),远红外 (400-10cm-1)

3. 研究对象:

具有红外活性的化合物,即含有共价键、并在振动过程中伴随有偶极矩变化的化合物。 4. 用途:

结构鉴定、定量分析和化学动力学研究等。 二、 分子振动方程式 1. 振动频率

对于双原子分子,可认为分子中的原子以平衡点为中心,以非常小的振幅作周期性的振动即化学键的振动类似于连接两个小球的弹簧(如下图) , 可按简谐振动模式处理,由经典力学导出振动频率:

双原子分子振动模拟图

2.振动能级(量子化):

按量子力学的观点,当分子吸收红外光谱发生跃迁时,要满足一定的要求,即振动能级是量子化的,可能存在的能级满足下式: E 振 =( V+ 1/2 )h n

n : 化学键的 振动频率; V : 振动量子数。 任意两个相邻的能级间的能量差为:

(用波数表示)

其中: K 为 化学键的力常数,与键能和键长有关; m 为双原子的折合质量。 发生振动能级跃迁需要能量的大小取决于键两端原子的折合质量和键的力常数,即取决于分子的结构特征。

化学键键强越强(即键的力常数 K 越大)原子折合质量越小,化学键的振动频率越大,吸收峰将出现在高波数区。 键类型 -C≡C- > -C=C- > -C-C- 力常数 15-17 9.5-9.9 4.5-6.6 峰位 4.5m 6.0m 7.0m

三、 分子的振动形式

两类基本振动形式:变形振动和伸缩振动 以甲烷为例:

弱吸收 (W) 中等强度吸收(M) 甲烷的变形振动

强吸收(S) 甲烷的伸缩振动

四. 红外光谱产生的条件

1. 红外光的频率与分子中某基团振动频率一致; 2. 分子振动引起瞬间偶极矩变化

完全对称分子,没有偶极矩变化,辐射不能引起共振,无红外活性, 如: N2 、 O2 、 等;非对称分子有偶极矩,属红外活性,如 HCl 。 偶极子在交变电场中的作用可用下图表示:

偶极子在交变电场中的作用示意图

五. 红外光谱峰的位置、峰数与强度 1.位置:

由振动频率决定,化学键的力常数 K 越大,原子折合质量 m 越小,键的振动频率越大,吸收峰将出现在高波数区(短波长区);反之,出现在低波数区(高波长区); 2.峰数:

分子的基本振动理论峰数,可由振动自由度来计算,对于由 n 个原子组成的分子,其自由度为3 n

3n= 平动自由度+振动自由度+转动自由度

分子的平动自由度为3,转动自由度为:非线性分子3,线性分子2 振动自由度=3 n- 平动自由度-转动自由度 非线性分子:

振动自由度=3 n-6 线性分子:

振动自由度=3 n-5

绝大多数化合物红外吸收峰数远小于理论计算振动自由度,其原因有:无偶极矩变化的振动不产生红外吸收;吸收简并;吸收落在仪器检测范围以外;仪器分辨率低,谱峰重叠等。 3.强度:

红外吸收的强度与 跃迁几率的大小和振动偶极矩变化的大小有关,跃迁几率越大、振动偶极矩越大,则吸收强度越大。 4 .红外光谱图:

纵坐标为吸收强度,横坐标为波长 λ , ( μ m ),和波数 1/ λ ,单位: cm -1 ,可以用峰数,峰位,峰形,峰强来描述

六 . 常用的红外光谱术语 1. 频峰:

由基态跃迁到第一激发态,产生的强吸收峰,称为基频峰(强度大); 2. 倍频峰:

由基态直接跃迁到第二、第三等激发态,产生弱的吸收峰,称为倍频峰; 3. 合频峰:

两个基频峰频率相加的峰; 4.Fermi 共振 :

某一个振动的基频与另外一个振动的倍频或合频接近时,由于相互作用而在该基频峰附近出现两个吸收带,这叫做 Fermi 共振,例如苯甲酰氯只有一个羰基,却有两个羰基伸缩振动吸收带,即1731 cm-1 和1736 cm-1, 这是由于羰基的基频(1720 cm-1) 与苯基和羰基的变角振动(880—860 cm-1) 的倍频峰之间发生 Fermi 共振而产生的. Fermi 共振的产生使红外吸收峰数增多,峰强加大. 5. 振动偶合:

两个化学键的振动频率相等或接近时,常使这两个化学键的基频吸收峰裂分为两个频率相差较大的吸收峰,这种现象叫做振动偶合.

第二节 红外光谱的应用

一、红外光谱一般解析步骤 1. 检查光谱图是否符合要求;

2. 了解样品来源、样品的理化性质、其他分析的数据、样品重结晶溶剂及纯度; 3. 排除可能的“假谱带”;

4. 若可以根据其他分析数据写出分子式,则应先算出分子的不饱和度U ∪ = (2 + 2n4 + n3 – n1 )/ 2

n4 , n3 ,n1分别为分子中四价,三价,一价元素数目; 5.确定分子所含基团计划削减的类型(官能团区4000-1330和指纹区1330-650cm-1

6. 结合其他分析数据,确定化合物的结构单元,推出可能的结构式; 7. 已知化合物分子结构的验证; 8. 标准图谱对照; 9. 计算机谱图库检索。

二、定性分析

定性分析大致可分为官能团定性和结构定性两个方面 定性分析的一般过程:

1. 试样的分离和精制

2.了解与试样性质有关的其它方面的材料 3. 谱图的解析 4. 和标准谱图进行对照

5. 计算机红外光谱谱库及其检索系统 6. 确定分子的结构

三 定量分析

定量分析的依据是郎伯-比尔定律。

红外光谱图中吸收带很多,因此定量分析时 , 特征吸收谱带的选择尤为重要,除应考虑 ε 较大之外,还应注意以下几点: (1) 谱带的峰形应有较好的对称性性 ;

(2) 没有其他组分在所选择特征谱带区产生干扰 ;

(3) 溶剂或介质在所选择特征谱带区域应无吸收或基本没有吸收; (4) 所选溶剂不应在浓度变化时对所选择特征谱带的峰形产生影响 ; (5) 特征谱带不应在对二氧化碳 、水蒸气有强吸收的区域。

谱带强度的测量方法主要有峰高(即吸光度值)测量和峰面积测量两种,而定量分析方法很多,视被测物质的情况和定量分析的要求可采用直接计算法 、 工作曲线法 、吸收度比法和内标法等。 1 .直接计算法

这种方法适用于组分简单,特征吸收谱带不重叠。且浓度与吸收成线性关系的样品。直接从谱图上读取吸光度 A 值,再按 朗伯 -比尔定律 算出组分含量 C 。这一方法的前提是应先测出样品厚度 L 及摩尔吸光系数 ε 值,分析精度不高时,可用文献报道 ε 值。 2 .工作曲线法

这种方法适用于组分简单,样品厚度一定(一般在液体样品池中进行),特征吸收谱带重叠较少,而浓度与吸光度不成线性关系的样品。 3 .吸光度比法

该发适用于厚度难以控制或不能准确测定其厚度的样品,例如厚度不均匀的高分子膜,糊状法的样品等。这一方法要求各组分的特征吸收谱带相互不重叠,且服从于郎伯 — 比尔定律。

如有二元组分 X 和 Y ,根据 朗伯 -比尔定律 ,应存在以下关系;

由于是在同一被测样品中,故厚度是相同的, 其吸光度比 R 为:

元体系。 4 .内标法

式中的 K 称为吸收系数比。前提是不允许含其他杂质。吸光度比法也适合于多

此法适用于厚度难以控制的糊状法 、压片法等的定量工作,可直接测定样品中某一组分的含量。具体做法如下:

首先,选择一个合适的纯物质作为内标物。用待测组分标准品和内标物配制一系列不同比例的标样,测量它们的吸光度,并用公式计算出吸收系数比 k 。 根据郎伯 — 比尔定律, 待测组分s的吸光度 As=εsCsLs 内标物I的吸光度 AI=εICILI

因内标物与待测组分的标准品配成标样后测定,故Ls=LI

在配置的标样中Cs、 CI都是已知的,As、AI可以从图谱中得到,因此可求得k值。然后在样品中配入一定量的内标物,测其吸光度,即可计算出待测组分的含量Cs。

式中,k由标样求得,CI是配入样品中的内标物量,As、AI可以从谱图中得到。如果被测组分的吸光度与浓度不成线性关系,即k值不恒定时,应先做出As/AI与Cs/CI工作曲线。在未知样品中测定吸光度比值后,就可以从工作曲线上得出响应的浓度比值。由于加入的内标物量是已知的,因此就可求得未知组分的含量。

第三节 红外光谱仪

(1) 傅里叶变换红外光谱法(FTIR)的基本原理

当不同能量的各种光线照射到物体上时都会相互作用而发生能量交换,频率越高的光线能量越大,与物质相互作用也越强烈,根据光线频率由高到低顺序,可把光线分为x 射线、紫外线、可见光、红外线、微波、无线电波等波段。当频率最高的x射线与物质相互作用时可使其分子的化学键断裂,紫外线、可见光则使物质分子中的电子发生能级跃迁,而能量较低的红外线只能使分子中的共价键发生振动,能量更低的微波和无线电波只能使分子发生转动或原子核、电子的自旋运动。由于物体发生上述分子内的结构变化时只吸收特定波长的光波,因此把透过物体的光线经过色散,分成不同波长组成的谱带,即可得到吸收光谱图,可以对不同波长光线被物体吸收情况进行研究。常用的吸收光谱有紫外、可见和红外三种。

红外光谱仪是利用光的色散原理制成的,当通过物体后的入射光经棱镜、光栅等单色器使光波色散,把复合光分为单色光,并按波长顺序排列到狭缝平面上并由检测器接收其信号,依次对单色光的强度进行测定,即得到样品的吸收光谱图。以前使用的红外光谱仪由于扫描的每一瞬间,只有极窄的一段光波落在检测器上,灵敏度和检测速度均受到限制,而傅立叶变换红外光谱仪利用迈克耳逊干涉仪,使光谱信号作到“多路传输”,并将干涉信号经傅立叶数学变换转换成普通光谱信号,因此能在同一时刻收集光谱中所有频率的信息,在一分钟内能对全部光谱扫描近千次,因此大大提高了灵敏度和工作效率。 (2) 傅里叶变换红外光谱仪的发展概况

1880年迈克耳孙(Michelson)发明了干涉仪,由于检测仪的灵敏度和傅里叶变换(FT)的计算问题,并未投入实际应用。20世纪上叶,William Webber Coblentz领导的美国国家标准技术研究所辐射测量部门率先发表“原子和分子基团在红外波长范围有特征吸收峰”,开始了对红外光谱仪的研究。第二次世界大战对合成橡胶的生产和检测需要,驱使了对红外光谱仪的研制和生产。色散型红外分光光度计开始广泛地应用于各个领域。20世纪50年代美国John Hopkins大学一实验小组及空军剑桥研究实验室建造高分辨率光谱仪后,傅里叶变换红外光谱仪才得到实际的应用。1965年Conley 和Tukey发表了“FT快速计算法”,极大地方便了计算机计算,使傅里叶变换红外光谱仪得到迅速发展。

现在傅里叶变换红外光谱仪已得到全面的发展,使用方法几乎适应各类物质的检测分析,包括衰减全反射法、漫反射法,光声光谱法、显微光谱法、动态光谱法(动力学法)、光谱仪与各种仪器的联用,以及与计算机技术的结合。现在,红外光谱法通常作为分析各种聚合物材料最佳选择的技术。在纺织工业领域,主要用于对未知物的分析;定量分析;织物等表面涂层的分析和高分子材料大分子链等的测定。

近红外光谱技术(NIR)是90年代以来发展最快、最引人注目的分析技术之一。随着NIR分析方法的深入应用和发展,已逐渐得到大众的普遍接受和官方的认可。1978年美国和加拿大就采用近红外法作为分析小麦蛋白质的标准方法,1998年美国材料试验学会制订了近红外光谱测定多元醇(聚亚安酯原材料)中羟值含量的ASTM D6342标准方法。2003年,在我国也正式实施了近红外光谱方法测定饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸的国家标准GB/T 18868-2002。

由于近红外光在常规光纤中有良好的传输特性,且其仪器较简单、分析速度快、非破坏性和样品制备量小、几乎适合各类样品(液体、粘稠体、涂层、粉末和固体)分析、多组分多通道同时测定等特点,成为在线分析仪表中的一枝奇葩。近几年,随着化学计量学、光纤和计算机技术的发展,在线近红外光谱分析技术正以惊人的速度应用于包括农牧、食品、化工、石化、制药、烟草等在内的许多领域,为科研、教学以及生产过程控制提供了一个十分广阔的使用空间。 (3)傅立叶红外光谱仪原理图

第四节 联用技术

GC/FTIR(气相色谱红外光谱联用) LC/FTIR(液相色谱红外光谱联用) PAS/FTIR(光声红外光谱)

MIC/FTIR(显微红外光谱)—— 微量及微区分析 第五节 测定技术 A、气体:气体池

B、液体:1.液膜法——难挥发液体(BP)80°C) 2.溶液法——液体池 C、固体:

1.溶剂: CCl4 ,CS2常用。 2.研糊法(液体石腊法) 3.KBR压片

4.法薄膜法:一些高分子膜可直接进行测量,但多数材料常常要拉制成膜,常用的制膜方法有:熔融法、溶液成膜法、切片成膜法等。

当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。红外光谱仪与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会;把红外光谱仪与显微镜方法结合起来,形成红外成像技术,用于研究非均相体系的形态结构,由于红外光谱能利用其特征谱带有效地区分不同化合物,这使得该方法具有其它方法难以匹敌的化学反差。

随着电子技术的日益进步,半导体检测器已实现集成化,焦平面阵列式检测器已商品化,它有效地推动了红外成像技术的发展,也为未来发展非傅里叶变换红外光谱仪创造了契机。随着同步辐射技术的发展和广泛应用,现已出现用同步辐射光作为光源的红外光谱仪,由于同步辐射光的强度比常规光源高五个数量级,这能有效地提高光谱的信噪比和分辨率,特别值得指出的是,近年来自由电子激光技术为人们提供了一种单色性好,亮度高,波长连续可调的新型红外光源,使之与近场技术相结合,可使得红外成像技无论是在分辨率和化学反差两方面皆得到有效提高。

因篇幅问题不能全部显示,请点此查看更多更全内容