Available online at www.sciencedirect.com
Journal of Environmental Sciences
www.jesc.ac.cn
Sizedistribution,characteristicsandsourcesofheavymetalsinhazeepisodinBeijing
JingchunDuan1,JihuaTan2,∗,JimingHao3,FaheChai1
1.StateKeyLaboratoryofEnvironmentalCriteriaandRiskAssessment,ChineseResearchAcademyofEnvironmentalSciences,Beijing100012,China.E-mail:duanjc@craes.org.cn
2.UniversityofChineseAcademyofSciences,Beijing100049,China3.SchoolofEnvironment,TsinghuaUniversity,Beijing100084,China
articleinfo
Articlehistory:
Specialissue:ProgressandprospectsofatmosphericenvironmentalscienceinChina
Keywords:
sourceapportionment;positivematrixfactorization;PM2.5;watersolubleion;healtheffect
DOI:10.1016/S1001-0742(13)60397-6
abstract
Sizesegragatedsampleswerecollectedduringhighpollutedwinterhazedaysin2006inBeijing,China.Twentynineelementsand9watersolubleionsweredetermined.HeavymetalsofZn,Pb,Mn,Cu,As,Cr,Ni,VandCdweredeeplystudiedconsideringtheirtoxiceffectonhumanbeing.Amongtheseheavymetals,thelevelsofMn,AsandCdexceededthereferencevaluesofNationalAmbientAirQualityStandard(GB3095-2012)andguidelinesofWorldHealthOrganization.Byestimation,highpercentageofatmosphericheavymetalsinPM2.5indicatesitisaneffectivewaytocontrolatmosphericheavymetalsbyPM2.5controlling.Pb,Cd,andZnshowmostlyinaccumulationmode,V,MnandCuexistmostlyinbothcoarseandaccumulationmodes,andNiandCrexistinallofthethreemodes.Consideringthehealtheffect,thebreakthroughratesofatmosphericheavymetalsintopulmonaryalveoliare:Pb(62.1%)>As(58.1%)>Cd(57.9%)>Zn(57.7%)>Cu(55.8%)>Ni(53.5%)>Cr(52.2%)>Mn(49.2%)>V(43.5%).PositivematrixfactorizationmethodwasappliedforsourceapportionmentofstudiedheavymetalscombinedwithsomemarkerelementsandionssuchasK,As,SO42−etc.,andfourfactors(dust,vehicle,agedandtransportation,unknown)areidentifiedandthesizedistributioncontributionofthemtoatmosphericheavymetalsarediscussed.
Introduction
Urbanairpollutionisaworldwideproblemcausingavarietyofriskstohumanhealth.FastgrowingcitiesindevelopingcountriessuchasChinaarestrongestaffectedbyurbanairpollutionshowinghighestburdenofdis-eases(Cohenetal.,2004;Chenetal.,2011).TheWorldHealthOrganization(WHO)estimatedthatannuallyabout300,000peopleprematurelydieduetourbanairpollutioninChina.
Atmosphericheavymetalscanimposealongtermbur-denonbiogeochemicalcyclingintheecosystem(Kellyetal.,1996;Nriagu,1988;NriaguandPacyna,1988).Among
∗Corresponding
author.E-mail:tanjh@ucas.ac.cn
them,As,Cr,Ni,Pb,Zn,Cu,VandCdarecarcinogenic,AsandCdarepotentiallymutagenic,PbandHgarefetaltoxic(Cheng,2003;Heetal.,2001).Inrecentyears,theheavymetalpollutionaccidentshavebeenreportedfrequentlyinChina(Zhou,2011).InFebruary2011,theStateCouncilofficiallyapprovedthe“12thFive-YearPlan”forcomprehensivepreventionandcontrolofheavymetalspollution.AnewNationalAmbientAirQualityStandard(NAAQS)(GB3095-2012)waspromulgatedinChinain2012,anditwillbeformallyimplementedsinceJanuary1,2016.InadditiontotighteningthePblimit,forthefirsttime,NAAQS(GB3095-2012)includedinthelimitsofCd,Hg,As,Cr(VI)inappendixasareferenceforlocalgovernmentstosetuplocalambientairqualitystandardsinduetime.Atmosphericemissionisoneofimportantwaysofheavymetalpollution;however,insufficientattention
190
JournalofEnvironmentalSciences2014,26(1)189–196
hasbeenpaidtoitinChina.
Knowledgeofthesizedistributionofparticulatematter(PM)isnotonlyvitalinunderstandingitseffectsonhumanhealth,itssourcesandtransformationprocessesduringatmospherictransport,butalsoforestimationthedrydepositionandlightextinctionoftheaerosol(Trijonis,1983;Pakkanenetal.,2001;Salmaetal.,2005;Tangetal.,2006;Duanetal.,2005,2007,2012;Tanetal.,2009a;Taoetal.,2012a,2012b).However,fewresearchonsizedistributionofinorganiccomponentsinaerosolhavebeencarriedoutinChina,especiallyforheavymetalsinBeijing(Ningetal.,1996),particularlyforaerosoldowntoultrafinefraction.
BeijingisthecapitalofChinawithapopulationofover19.61million.SeriousairpollutionhasbeenreportedinBeijing,andgreateffortshavebeenmadetoimprovetheairquality,especiallysince1998.Fromthenon,theairpollutioninBeijinghaschangedfromsimpletypeofcoalburningtomixedtypeoftrafficexhaustandcoalburningcontributedbyimprovementsofindustrialandenergystructure,usageofcleanenergyincludingnaturegasandcleancoal,reductioninpollutionsources,andimplementationofadvancedenvironmentalstandards(Zhangetal.,2011).Inthisstudy,sourceapportionmentofheavymetalswasfirstemployedinBeijingbypositivematrixfactorization(PMF)baseonsizesegregateddata,andbothsourcesandtheirsizedistributionwereobtained.Thedataisimportantforstudiesonbothhealtheffectandpolicy-making.AsFig.1shows,thesamplingperiodwasintheyearof2006withhighpollutionofPM10inBeijing,sotheresultofthisstudywillalsohelptoevaluatetheeffectofenvironmentalpoliciessincethen.
1Materialsandmethods
1.1Studyareaandsampling
A13-stagelowpressureimpactor(Dekati,Tampere,Fin-land)wasusedtoprovideresolutionofthesizedistribution
400350)3300TSP
m/gμ250∆(01M200∆P,PS150TPM10
100500
199419951996199719981999200020012002200320042005200620072008200920102011
Fig.1TrendsofTSPandPM10inBeijing,China,during1994–2011.Datawerecollectedfromhttp://www.bjepb.gov.cn.
ofaerosolpopulationsfromcoarseparticlestoultrafineparticles.PTFEfiltersubstrates(Waters,USA)wereusedonallstages,andataflowrateof10L/minthe50%cutoffdiameters(D50,μm)were9.92,6.68,4.00,2.39,1.60,0.948,0.613,0.382,0.263,0.157,0.095,0.056and0.028.SamplingsiteofTsinghuaisanurbansiteontherooftopofabuilding(5mabovetheground)withinTsinghuaUni-versity,whichislocated20kminthenorthwestdirectionfromthecenterofBeijingand2kmfrom4thRingRoad.Someboilersforheatingandcookingmayexistinthevicinity.Moredetailinformationcanbefoundinpreviouspublication(Duanetal.,2008).
FoursetsofsamplesBJ1,BJ2,BJ3andBJ4withdurationrangesfrom48–72hrwerecollectedduring4th–7th,10th–13th,17th–20thand25th–27th,Dec.2006,respectively.Totally,48sampleswerecollected.AsFig.1shows,thePM10levelswereveryhighin2006,andthesamplescollectedinthisstudycanrepresentthesituationbeforeBeijingOlympicGamesin2008forwhichthegovernmenthadtakengreateffortstocontroltheairpollutionandthePM10levelshadgraduallydecreasedfrom161to114μg/m3sincethen.1.2Chemicalanalysis
Theaerosol-loadedfilterswerecutintohalfs,andsamplesofonehalfwereplacedinTeflontubeswitha4-mLmixtureofconcentratedhydrochloricacidandnitricacidatvolumeratioof3:1,andthenmicrowavedfor58mintoensurethecompletedigestionofparticlescollectedonTeflonfilters.Themicrowaveprocessconsistedoffourstepsundertheoperationpowerof1200W.Thefirststepistohavetemperaturerampingto120°Cfromroomtemperaturein5minandholdingfor5min;thesecondisrampingto155°Cin8minandholdingfor8min;thethirdisrampingto180°Cin5minandholdingfor5min;andthelaststepisrampingto195°Candholdingfor12min.Then,thedigestedsolutionwasdilutedto10mLusingultrapurewater(specificresistance8.3MΩ·cm)toperformthemetalanalysisbyinductivelycoupledplasma-massspectrometry(ICP-MS)(Thermo,Xserial)andICP-AES(Thermo,IRISIntrepidIIXSP).Thecalibrationwasmadeusingmulti-element(metal)standards(certifiedreferencematerials;NationalAnalysisCenterforIronandSteel,China)ina3%(V/V)HNO3solution.Sixblankfiltersweretreatedandanalyzedinthesamewayasfortheactualsamples.Inaddition,theapproximatedetectionlimits(threetimesthestandarddeviationofblanksanalyzed)wereSi(216μg/L),Al(33μμgg//L),L),NaCa(55(221μgμ/L),g/L),MgSc(40(0.15μg/L),μg/SL),(92Tiμg(5.14/L),Kμg(102/L),V(0.083μg/L),Cr(0.93μg/L),Mn(1.14μg/L),Fe(40μg/L),Co(0.71μg/L),Ni(0.41μg/L),Cu(0.74μg/L),Zn(2.85μg/L),Ga(0.16μg/L),As(0.17μg/L),Se(0.22μg/L),Sr(0.77μg/L),Zr(0.57μg/L),Mo(0.09μg/L),Ag(0.11μg/L),Cd(0.027μg/L),Sb(0.14μg/L),Ba(1.43
JournalofEnvironmentalSciences2014,26(1)189–196
191
μg/L),Tl(0.10μg/L)andPb(1.11μg/L).
Ultrasonicmethodwasusedtoextractinorganicionsfromanotherhalfofsamplesandnormallyover98%ofsulfate,nitrate,andammoniumcanbeextracted.Thefilterwassubmergedinavialwith10mLultrapurewater,sealedandsubjectedtoultrasoundfor20minforextrac-tion.Theextractwasthenanalyzedbyionchromatography(Dionex1400)todeterminetheconcentrationsofinorgan-icions.Theconcentrationsofthewater-solubleinorganicionsinthefieldblankswere0.22,0.11,notdetected(nd),0.21,nd,0.32,nd,0.35and0.21μg/m3forF−,Cl−,NO3−,SO42−,NH4+,Na+,K+,Ca2+andMg2+,respectively.Therecoveryofeachionwasintherangeof80%–120%.Therelativestandarddeviationofeachionwaslessthan6%forthereproducibilitytest.Blankvaluesweresubtractedfromsampledeterminations.Thedetailsweregivenelsewhere(Tanetal.,2009b).1.3PMFanalysis
ThePMFmodelwasdevelopedbyPaateroandTapper(1994)andPaatero(2004).EPAPMFisoneofthereceptormodelsdevelopedbytheUSEnvironmentalProtectionAgency(EPA)’sOfficeofResearchandDevelopment.ThealgorithmsusedinEPAPMFmodeltocomputeprofilesandcontributionshavebeenpeerreviewedbyleadingscientistsintheairqualitymanagementcommunityandhavebeencertifiedtobescientificallyrobust.Inthisstudy,massconcentration,17elementsand8ionswereincludedinthemodelEPAPMF3.0.Theinputdataincludingcon-centrationsofsizesegregatedspeciesandequation-baseduncertainties.Theequation-baseduncertaintyincludingdetectionlimits(listedinSection1.2)anderrorfractions(5%).Iftheconcentrationislessthanorequaltothemethoddetectionlimit(MDL)provided,theuncertainty(Unc)iscalculatedusingthefollowingEq.(1)(Polissaretal.,1998):
Unc=
5
×MDL6
(1)
IftheconcentrationisgreaterthantheMDLprovided,thecalculationis
Unc=
(Errorfraction×Concentration)2+MDL2
(2)
2Resultsanddiscussion
2.1LevelsofatmosphericPMandheavymetalsSomeepidemiologicalevidencessuggestmortalityinur-banareasmaybelinkedtoPM10(Lippmann,1998).AsshowninTable1,theaveragedPM10andPM2.5were192.2and119.0μg/m3respectivelyduringthestudyperiodinwinterinBeijing,muchhigherthantheNAAQSofChinaforPM10(100and70μg/m3annuallyforGB3095-1996andGB3095-2012,respectively)andPM2.5(35μg/m3annuallyGB3095-2012).ThePM10andPM2.5alsoexceedWHOguidelinesmorethan8.61and10.90times.ItindicatesthePMpollutionsinwinterinBeijingismuchserious.
Pbisaheavymetalnervetoxic.AccordingtoTable1,theaverageconcentrationofatmosphericPbis281.6ng/m3inBeijingcomparabletoreportedaverageconcen-trationof261.0ng/m3inChina,whichfallbelowtheannuallimitsofcurrentNAAQSofChina(GB3095-1996)of1000ng/m3,appendixofNAAQS(GB3095-2012,500ng/m3)andtheWHOguidelineof500ng/m3.ThiscanbemainlyattributedtothenationwideprohibitionofleadedgasolineinChinasinceJuly1,2000.Previousstudy(Li
Table1ComparisonofPM10,PM2.5andatmosphericheavymetalswithNAAQSandWHOguidelinesNAAQSGB3095-1996
NAAQSGB3095-20127035505006
WHO(2000)2010100050010006.6150250.255
Thisstudy192.2119.0281.610.747.1163.722.741.65.8501.972.2
RatiotoWHO9.6111.900.560.017.141.090.911.16
261.017.951.0198.829.085.713.2424.5117.0
AveragedlevelsinChina∗PM10(μg/m3)PM2.5(μg/m3)Hg(ng/m3)Pb(ng/m3)V(ng/m3)As(ng/m3)Mn(ng/m3)Ni(ng/m3)Cr(VI)(ng/m3)Cd(ng/m3)Zn(ng/m3)Cu(ng/m3)
100
1000
0.0255
*DuanandTan,2013192
JournalofEnvironmentalSciences2014,26(1)189–196
etal.,2000)hadshownthat,sincethephaseoutoftheleadedgasoline,theaverageannualconcentrationofPbdecreasedby74%comparedwithbefore.However,exceptforvehicleemissions,coalcombustionisalsoamajorsourceforanthropogenicPb(Duanetal.,2012).
Vcanbeenemittedintotheatmospherebythreeways(Al-Momani,2003;Linetal.,2005):naturalrockweath-ering;combustionoffossilfuelssuchascoalandoil;miningandsmeltingofvanadiumcontainingmineralssuchasvanadium-titaniummagnetite.TheconcentrationofatmosphericVis10.7ng/m3inBeijingwhichismuchlowerthanthereportedaverageconcentrationof17.9ng/m3inChina,andmuchlowerthanthelimitofWHO1000ng/m3aswell.ThereisnolimitofVinbothcurrentandnewNAAQS(GB3095-1996,GB3095-2012).
Asisoneofthemostdangerouscarcinogenicelementstohuman.AlthoughAsisnotaheavymetal,consideringitshealtheffect,itisdiscussedasaheavymetal(oid)inthecontext.Studieshaveshownthatcoalcombustionisoneoftheimportantanthropogenicsource(NriaguandPacyna,1988).TheconcentrationofatmosphericAsis47.1ng/m3inthisstudywhichissimilartothereportedaverageconcentrationof51.0ng/m3inChina,andmuchhigherthanthelimitofthenewNAAQS(GB3095-2012)inChina(6ng/m3)andthelimitofWHO(6.6ng/m3).ExcessMnwilldoharmtothenervous,immuneandreproductivesystemsofhumanbeings.AtmosphericMncomesmainlynotonlyfromanthropogenicsourcessuchascoalcombustion,metalsmeltingandgasolineantiknockadditive,butalsofromnaturalsourcesofsoilerosion.AtmosphericMnwasenrichedinbothcoarseandfineparticles(Duanetal.,2012).Theconcentrationofatmo-sphericMnis163.7ng/m3inthisstudy,whichisclosetoWHO’slimitof150ng/m3.ThereisnolimitofMninbothcurrentandnewNAAQS(GB3095-1996,GB3095-2012).NiisdefinedasthefirstclassofcarcinogensbyCancerResearchCenter.PetroleumandcoalcombustionarethemajorsourcesofNi,andsomeindustryprocessessuchassmeltingofnickeloreandnickel-containingmetalores(especiallyironorsteel)canalsoemitNi.Theconcentra-tionofatmosphericNiis22.7ng/m3inthisstudy,neartoWHO’slimitof25ng/m3.ThereisnolimitofNiinbothcurrentandnewNAAQS.
MostatmosphericCrexistsintwoformsofinorganicCr(III)andCr(VI).Cr(VI)candoharmtothekidneysandheart,andhaveacarcinogeniceffect.BothnewNAAQS(GB3095-2012)ofChinaandlimitofWHOonlylistouttheCr(VI)concentrationlimit,however,generallythedatareportedintheliteratureisoftotalCrandfewdataonCr(VI).ThetotalconcentrationofatmosphericCris41.6ng/m3inthisstudy.ThestudiesontheformsofatmosphericCrarelimited,andatmosphericCr(VI)needstobefurtherstudied.
Afterbreathingintothebody,mostCdwillgetintotheliverandkidneys.Theconcentrationofatmospheric
Cdis5.8ng/m3inthisstudy,similartothenewNAAQS(GB3095-2012)inChinaandtheWHOlimitof5ng/m3.CuandZncanbecometoxicwhenpresentinginexcessiveamount.TheconcentrationofatmosphericCuandZnare72.2ng/m3and501.9ng/m3respectivelyinthisstudy.AsTable1shows,comparedwithconcentrations,theatmosphericheavymetalsinBeijinginwinterrankas:Zn>Pb>Mn>Cu>As>Cr>Ni>V>Cd,andalltheseheavymetalsareneartheaveragelevelsinChinawhichreviewedbyDuanandTan(2013).TheconcentrationratiosofatmosphericheavymetalstoWHOguidelinescanreachashighas7.14(0.01–7.14),however,comparedwiththeratiosofPM10andPM2.5(9.61and11.90),theyarestillmuchlower.ItindicatedthatitismoreimportanttocontrolatmosphericheavymetalsbycontrolPMfirst.2.2SizedistributionofatmosphericheavymetalsGenerally,typicalaerosolspectrahavethreepeaks(modes).Coarsemodeparticles(>2μm)tendtobeme-chanicallygeneratedsuchassoildust,seasprayaerosol,androaddustinurbanareas.Nucleation(<0.1μm)andaccumulationmode(0.1–2μm)particlestendtobeproducedeitherdirectlyfromcombustionsources,orbygastoparticleconversioninvolvingreactionproductsofsulphates,nitrates,ammoniumandorganics.Figure2showsthesizedistributionofthestudiedatmosphericheavymetalsinBeijing.
Allthestudiedheavymetalsexistinallofthenucleationmode,accumulationmodeandcoarsemodeparticles.Amongthem,Pb,Cd,AsandZnshowmostlyinaccumu-lationmode;V,MnandCuexistmostlyinbothcoarseandaccumulationmodes;andNiandCrexistinallofthethreemode.Consideringthehealtheffectandvisibilitydegra-dation,anewNAAQS(GB3095-2012)waspromulgatedinChinain2012,andPM2.5limitswereaddedintoitforthefirsttime.AsFig.2shows,byestimation,theratiosofatmosphericheavymetalsinPM2.5(PM2.39inthisstudy)tothoseinPM10(PM9.92inthisstudy)rankedasPb(88.5%)>>CdCr(71.7%)(81.8%)>>NiZn(67.9%)(81.5%)>>MnAs(63.3%)(77.1%)>>VCu(46.8%).(75.9%)ItindicatesthatitisaneffectivewaytocontrolatmosphericheavymetalsbyPM2.5controlling.
Consideringhealtheffect,sincesmalleraerosolcaneasilygetintothehumanrespiratorysystem,theheavymetalsassociatedwithsmalleraerosolwilldomoreharmtohumanhealth.USEPA(1982)presentedthedeposi-tionratesofparticlesintherespiratorytractformouthbreathingasafunctionofparticlesize.Accordingtoit,thebreakthroughofatmosphericheavymetalsintopulmonaryalveoliareshowninFig.2.Bycalculation,thebreak-throughratesofthestudiedheavymetalsintopulmonaryalveoliare:Pb(62.1%)>As(58.1%)>Cd(57.9%)>Zn(57.7%)>Cu(55.8%)>Ni(53.5%)>Cr(52.2%)>Mn(49.2%)>V(43.5%).
JournalofEnvironmentalSciences2014,26(1)189–196
1.2dC/(Ctotal*dlogDp)1.0 0.80.60.40.2345672345672345670.010
34562345623456 Pb Breakthrough PbdC/(Ctotal*dlogDp) As Breakthrough As193
1.21.00.80.60.40.20.0345670.1
2345671
Dp (μm)
23456710
1.2dC/(Ctotal*dlogDp)1.00.80.60.40.20.0 ZnBreakthrough Zn0.1
1
Dp (μm)
0.1
1
Dp (μm)
10
1.4dC/(Ctotal*dlogDp)1.21.00.80.60.40.20.0 Cd Breakthrough Cd dC/(Ctotal*dlogDp)1.00.80.60.40.2 V Breakthrough VdC/(Ctotal*dlogDp)1.41.21.00.80.60.40.20.0 Cr Breakthrough Cr345670.1
2345671
Dp (μm)
2345670.010
34560.1
234561
Dp (μm)
2345610
1.00.8dC/(Ctotal*dlogDp)0.60.40.20.0345670.1
2345671
Dp (μm)
23456710
1.0dC/(Ctotal*dlogDp)0.80.60.40.20.0
dC/(Ctotal*dlogDp) Cu Breakthrough Cu1.00.80.60.40.20.0 Mn Breakthrough Mn Ni Breakthrough Ni345670.1
2345671
Dp (μm)
23456710
34560.1
234561
Dp (μm)
2345610
345670.1
2345671
Dp (μm)
23456710
Fig.2SizedistributionofatmosphericheavymetalsandtheirbreakthroughintopulmonaryalveoliinBeijing.Theerrorbarsrepresentonestandarddeviationforthefoursetsofsamples.
2.3SourceapportionmentofatmosphericheavymetalsFoursetsof48sizesegregatedsampleswereinputtoEPAPMF3.0.Inordertosimplifythemodelcalculation,exceptforthenineheavymetals,onlyelementsandionsasgoodsourcemarkersandwithlowuncertaintieswereincludedinthemodeling:Al,Ca,Fe,K,Mg,V,Cr,Mn,Ni,Cu,Zn,As,
−2−
Se,Cd,Sb,Ba,Pb,Na+,K+,Mg2+,Ca2+,NH+4,Cl,SO4,NO−3andmassconcentration.Amongthem,AlandCaareindicatorsofcrustrelateddust(Duanetal.,2012);Kisamarkerofbiomassburning(Duanetal.,2004);AsandSegenerallymostcomefromcoalburning(Duanetal.,2012);
2−−
NH+4,SO4andNO3areindicatorofsecondaryaerosolandlongrangetransportation.Tanetal.(2009)reportedtheseionsaresignificantlyhigherinhazedaysthannormaldays.
FourfactorsareidentifiedbyEPAPMF3.0,andfactorprofiles(%ofspeciestotal)areillustratedasFig.3.Factor1(dust)hashighcontributionofAl(91.2%),Ca(95.8%),Fe(81.4%),Mg(89.3%)andBa(84.1%)indicatingcrustrelateddust(Heetal.,2001).Factor1isthemainsourceof
V(58.2%)andMn(35.1%),andcontributeslessthan20%tootherheavymetals.
Factor2(vehicle)hashighcontributionofMn(39.5%),Cu(35.6%),Zn(50.5%),As(40.7%),Cd(55.7%)andPb(26.9%)indicatingvehicleemission,andFactor2contributeslessthan20%tootherheavymetals.ItisconcludedthatvehiclesemissionsmaybethemajorsourceofPb,Cu,ZnandCdurbancontamination(Johanssonetal.,2009).
Factor3(agedtransportation)contributeshightoK(59.7%),As(48.1%),Se(86.0%),Pb(62.8%)andmost
2−
ofthesecondaryionsofNH+4(93.0%),SO4(69.0%)andNO−3(73.2%).Itindicatesitisamixtureofagedlongrangetransportationsource.Themixturemayincludebiomassburning,coalburningandotherindustriessuchasironandsteelindustry.BeijingwassurroundedbyTianjinCityandHebeiProvince.Tianjinisoneofthebiggestindustrialcitywithapopulationof9.3million.HebeiProvincehasthehighestironandsteelproductivityinChina,andthecoalconsumptionwasmuchhigh.BiomassburningwasoftenreportedinHebeiProvince.Ruralbiomassburning
194
100%JournalofEnvironmentalSciences2014,26(1)189–196
Dust50%
0100%
Vehicle50%
Relative contribution0100%
Aged and transportation50%
0100%Unknown50%
0
AlCaFeKMgVCrMnNiCuZnAsSeCdSbBaPbNa+K+Mg2+Ca2+NH4+Cl-SO42-NO3-PMFig.3Factorprofiles(%ofspeciestotal)obtainedfromEPAPMF3.0model.
hasalsobeenidentifiedasanimportantcontributortofinePMconcentrationsinBeijing(Duanetal.,2004).Factor3alsocontributestootherheavymetalsofV(26.6%),Cr(5.3%),Cd(37.8%)andMn(25.4%).
Factor4(unknown)contributeshightoCr(65.7%),Ni(56.3%),Na(50.1%)andCl(33.55%).ThesourceofFactor4isstillneedtobefurtherstudied.Factor4contributesmuchlesstootherheavymetals(<10%).Astomassconcentrationcontributions,itcanberankedasFactor3(agedandtransportation:46.7%)>Factor1(dust:40.7%)>Factor2(vehicle:8.8%)>Factor4(unknown:3.8%).Thisresultissimilartothosefoundbyotherresearchersthatabout34%ofPM2.5onaveragecanbeattributedtosourcesoutsideBeijing,andduringsustainedwindflowfromthesouth,HebeiProvincecancontribute50%–70%ofPM2.5concentrationsinBeijing(Streetsetal.,2007).
Althoughthetotalcontributionofatmosphericheavymetalsasdiscussedafore,thecontributionstronglyrelyonthesizedistributionasFig.4shows.Generally,Factor1contributesmoretocoarsemodeandlittleinnucle-ationandaccumulationmodeconcentrations;Factor2contributesmoretoaccumulationmodeandalittlecoarsemodeconcentrations;Factor3contributesmosttoaccu-mulationmodeconcentrations;andFactor4contributestoallofthethreemode.
3Conclusions
AstudyonsizedistributionsofatmosphericheavymetalswascarriedoutduringhazeinwinterinBeijing,Chi-na.Thelevels,sizedistributionsandsourcesofheavymetals(Zn,Pb,Mn,Cu,As,Cr,Ni,VandCd)werediscussed.Amongthem,atmosphericMn,Ni,As,CdandPbexceedthereferencevaluesofNAAQS(GB3095-2012)andguidelinesofWHO.TheconcentrationratiosofatmosphericheavymetalstoWHOguidelinescanreachashighas7.14,however,comparedwiththeratiosofPM10(9.61)andPM2.5(11.90),theyarestillmuchlow.ItindicatedthatitismoreimportanttocontrolatmosphericheavymetalsbycontrolPMfirst.Pb,Cd,andZnshowmostlyinaccumulationmode,V,MnandCuexistmostlyinbothcoarseandaccumulationmodes,andNiandCrexistinallofthethreemode.Byestimation,highpercent-ageofatmosphericheavymetalsinPM2.5indicatesitisaneffectivewaytocontrolatmosphericheavymetalsbyPM2.5controlling.Consideringthehealtheffect,thebreak-throughratesofatmosphericheavymetalsintopulmonaryalveoliare:Pb(62.1%)>As(58.1%)>Cd(57.9%)>Zn(57.7%)>Cu(55.8%)>Ni(53.5%)>Cr(52.2%)>Mn(49.2%)>V(43.5%).PMFmethodwasappliedfor
JournalofEnvironmentalSciences2014,26(1)189–196
195
Unknown
As Dust
100Mass dM/dlogDp (ng/m3)806040200ZnMass dM/dlogDp (ng/m3)5040302010 VehiclePbAged and transportation
Mass dM/dlogDp (ng/m3)34567890.1
234567891
Dp (μm)
2345678910
86420
34567890.1
234567891
Dp (μm)
2345678910
63456789234567892345670.11
Dp (μm)Cr10
1.2Mass dM/dlogDp (ng/m3)1.00.80.60.40.2CdMass dM/dlogDp (ng/m3)54321VMass dM/dlogDp (ng/m3)2345678910
43210
0.034567890.112Mass dM/dlogDp (ng/m3)10864200.034567890.1
Cu234567891
Dp (μm)2345678910
0.03456789234567890.11
Dp (μm)25Mass dM/dlogDp (ng/m3)20151050Mn3456789234567892345670.11
Dp (μm)Ni10
2.5Mass dM/dlogDp (ng/m3)2.01.51.00.50.0234567891
Dp (μm)
2345678910
34567892345678923456789100.11
Dp (μm)
34567890.1
234567891
Dp (μm)
23456710
Fig.4Sizedistributionofatmosphericheavymetalsreconstructedbysourcecontributions.
sourceapportionmentofstudiedheavymetalscombined
−
withsomemarkerelementsandionssuchasK,As,SO24etc.Fourfactorsareidentified:Factor1(dust)isthemainsourceofV(58.2%)andMn(35.1%),andcontributelessthan20%tootherheavymetals.Factor2(vehicle)hashighcontributionofMn(39.5%),Cu(35.6%),Zn(50.5%),As(40.7%),Cd(55.7%)andPb(26.9%),howevercontributeslessthan20%tootherheavymetals.Factor3(agedandtransportation)contributeshightoAs(48.1%),Pb(62.8%),andalsocontributetoV(26.6%),Cr(5.3%),Cd(37.8%)andMn(25.4%).Factor4(unknown)contributeshighonlytoCr(65.7%),Ni(56.3%),andcontributesmuchlesstootherheavymetals(<10%).
Acknowledgments
ThisworkwassupportedbytheNationalNaturalSci-enceFoundationofChina(No.41105111,41275134),theNationalDepartmentPublicBenefitResearchFoundation(MEP)(No.201109005),andtheResearchFoundofCRAES(No.2012ysky09).references
Al-MomaniIF,2003.Traceelementsinatmosphericprecipitation
atNorthernJordanmeasuredbyICP-MS:Acidityandpossiblesources.AtmosphericEnvironment,37(32):4507–4515.
196
JournalofEnvironmentalSciences2014,26(1)189–196
ChenBH,KanHD,ChenRJ,JiangSH,HongCJ,2011.Airpollution
andhealthstudiesinChina-Policyimplications.JournaloftheAirandWasteManagementAssociation,61(11):1292–1299.
ChengSP,2003.HeavymetalpollutioninChina:Origin,patternand
control.EnvironmentalScienceandPollutionResearch,10(3):192–198.
CohenAJ,AndersonHR,OstroB,PandeyKD,KrzyzanowskiM,
K¨unzliNetal.,2010.Urbanairpollution.In:ComparativeQuan-tificationofHealthRisks:GlobalandRegionalBurdenofDiseaseAttributiontoSelectedMajorRiskFactors(EzzatiM,LopezAD,RodgersAetal.,eds.).Geneva:WorldHealthOrganization;2004.(accessed3September2010).1353–1434.
DuanFK,LiuXD,YuT,CachierH,2004.Identificationandestimateof
biomassburningcontributiontotheurbanaerosolorganiccarbonconcentrationsinBeijing.AtmosphericEnvironment,38(9):1275–1282.
DuanJC,BiXH,TanJH,ShengGY,FuJM,2005.Thedifferencesof
thesizedistributionofpolycyclicaromatichydrocarbons(PAHs)betweenurbanandruralsitesofGuangzhou,China.AtmosphericResearch,78(3-4):190–203.
DuanJC,BiXH,TanJH,ShengGY,FuJM,2007.Seasonalvariation
onsizedistributionandconcentrationofPAHsinGuangzhouCity,China.Chemosphere,67(3):614–622.
DuanJC,TanJH,WangSL,HaoJM,ChailFH,2012.Sizedistributions
andsourcesofelementsinparticulatematteratcurbside,urbanandruralsitesinBeijing.JournalofEnvironmentalSciences,24(1):87–94.
DuanJC,TanJH,YangL,WuS,HaoJM,2008.Concentration,sources
andozoneformationpotentialofvolatileorganiccompounds(VOCs)duringozoneepisodeinBeijing.AtmosphericResearch,88(1):25–35.
DuanJC,TanJH,2013.AtmosphericheavymetalsandarsenicinChina:
situation,sourcesandcontrolpolicies.AtmosphericEnvironment,74:93–101.
HeKB,YangFM,MaYL,ZhangQ,YaoXH,ChanCKetal.,
2001.ThecharacteristicsofPM2.5inBeijing,China.AtmosphericEnvironment,35(29):4959–4970.
JohanssonC,NormanM,BurmanL,2009.Roadtrafficemissionfactors
forheavymetals.AtmosphericEnvironment,43(31):4681–4688.KellyJ,ThorntonI,SimpsonPR,1996.Urbangeochemistry:Astudyof
theinfluenceofanthropogenicactivityontheheavymetalcontentofsoilsintraditionallyindustrialandnonindustrialareasofBritain.AppliedGeochemistry,11(1-2):363–370.
LiWJ,LiuCX,WangL,2000.Non-leadgasolineandtrendoflead
pollutioninair.UrbanEnvironment&UrbanEcology,20:61–62.LinCC,ChenSJ,HuangKL,HwangWI,Chang-ChienGP,Lin
WY,2005.Characteristicsofmetalsinnano/ultrafine/fine/coarseparticlescollectedbesideaheavilytraffickedroad.EnvironmentalScienceandTechnology,39(21):8113–8122.
LippmannM,1998.The1997USEPAstandardsforparticulatematter
andozone.In:IssuesinEnvironmentalScienceandTechnology,10(HesterRE,HarrisonRM,eds.).RoyalSocietyofChemistry,Cambridge.75–99.
NingDT,ZhongLX,ChungYS,1996.Aerosolsizedistribution
andelementalcompositioninurbanareasofnorthernChina.AtmosphericEnvironment,30(13):2355–2362.NriaguJO,1988.Asilentepidemicofenvironmentalmetalpoisoning.
EnvironmentalPollution,50(1-2):139–161.
NriaguJO,PacynaJM,1988.Quantitativeassessmentofworldwide
contaminationofair,waterandsoilsbytrace-metals.Nature,333(6169):134–139.
PaateroP,2004.User’sguideforpositivematrixfactorizationprograms
PMF2andPMF3,Part1:tutorial.
PaateroP,TapperU,1994.Positivematrixfactorization:anon-negative
factormodelwithoptimalutilizationoferrorestimatesofdatavalues.Environmetrics,5(2):111–126.
PakkanenTA,KerminenVM,KorhonenCH,HillamoRE,Aarnio
P,KoskentaloTetal.,2001.UseofatmosphericelementalsizedistributionsinestimatingaerosolsourcesintheHelsinkiarea.AtmosphericEnvironment,35(32):5537–5551.
PolissarAV,HopkePK,PaateroP,MalmWC,SislerJF,1998.
AtmosphericaerosoloverAlaska-2.Elementalcompositionandsources.JournalofGeophysicalResearch-Atmospheres,103(D15):19045–19057.
SalmaI,OcskayR,RaesN,MaenhautW,2005.Finestructureof
masssizedistributionsinanurbanenvironment.AtmosphericEnvironment,39(29):5363–5374.
StreetsDG,FuJS,JangCJ,HaoJM,HeKB,TangXYetal.,2007.
Airqualityduringthe2008BeijingOlympicGames.AtmosphericEnvironment,41(3):480–492.
TanJH,DuanJC,ChenDH,WangXH,GuoSJ,BiXHetal.,
2009a.ChemicalcharacteristicsofhazeduringsummerandwinterinGuangzhou.AtmosphericResearch,94(2):238–245.
TanJH,DuanJC,HeKB,MaYL,DuanFK,ChenYet
al.,2009b.ChemicalcharacteristicsofPM2.5duringatypicalhazeepisodeinGuangzhou.JournalofEnvironmentalSciences,21(6):774–781.
TangXL,BiXH,ShengGY,TanJH,FuJM,2006.Seasonalvariation
oftheparticlesizedistributionofn-alkanesandpolycyclicaro-matichydrocarbons(PAHs)inurbanaerosolofGuangzhou,China.EnvironmentalMonitoringandAssessment,117(1-3):193–213.TaoJ,CaoJJ,ZhangRJ,ZhuLH,ZhangT,ShiSetal.,2012a.
Reconstructedlightextinctioncoefficientsusingchemicalcompo-sitionsofPM2.5inwinterinUrbanGuangzhou,China.AdvancesinAtmosphericSciences,29(2):359–368.
TaoJ,ShenZX,ZhuCS,YueJH,CaoJJ,LiuSXetal.,2012b.
Seasonalvariationsandchemicalcharacteristicsofsubmicrometerparticle(PM1)atGuangzhou,China.AtmosphericResearch,118:222–231.
TrijonisJ,1983.Developmentandapplicationofmethodsforestimating
inhalableandfineparticleconcentrationsfromroutineHi-Voldata.AtmosphericEnvironment(1967),17(5):999–1008.
USEPA(EnvironmentalProtectionAgency),1982.Airqualitycriterion
forparticulatematterandsulfuroxides.TechnicalReportEPA-600/8-82-029.
WHO,2000.WorldHealthOrganization.GuidelinesforAirQuality
Geneva.
ZhangJ,OuyangZY,MiaoH,WangXK,2011.Ambientairquality
trendsanddrivingfactoranalysisinBeijing,1983–2007.JournalofEnvironmentalSciences,23(12):2019–2028.
ZhouSX,2011.[EB/OL].(2010-1-25).http://www.mep.gov.cn/
zhxx/hjyw/201001/t20100129185134.htm.
因篇幅问题不能全部显示,请点此查看更多更全内容