第一讲 找规律(一)
事物的发展中有规律的,只有认为观察事物,找到事物发展变化的规律,才能深入地了解和掌握它,从而找到解决问题的方法和途径。在数学竞赛中,常常出现按规律填数的题目,找规律的方法是根据已知数的前后(可上下)之间的联系,找出其中的规律,求得相应的数。
例题与方法
例1. 请找出下列各组数排列的规律,并根据规律在括号里填上适当的数。 (1)1,5,9,13,( ),21,25。 (2)3,6,12,24,( ),96,192。 (3)1,4,9,16,25,( ),49,64,81。 (4)2,3,5,8,12,17,( ),30,38。 (5)21,4,16,4,11,4,( ),( )。 (6)1,6,5,10,9,14,13,( ),( )。
例2.根据下表中数的排列规律,在空格里填上适当的数。 (1) ( 2 )
24 7 5 13 20 7
8 9 17
36 12 6 5 9
例3.下面每个括号里两个数按一定规
14 16 律组合,在里填上适当的
数。
(9,13),(17,5),(14,8),( ,16)。
例4.根据前面两个圈里三个数的关系,在第三个圈里的( )里填上适当的数。
20 18 25 ( ) 20 16 10 8 ( )
练习与思考
1.找出下面各组数排列的规律,并根据规律在括号里填上合适的数。
(1)1,4,3,6,5,( ),( )。 (2)1,4,16,64,( )。 (3)11,3,8,3,5,3,( ),( )。 (4)0,1,3,8,21,( )。 2.找规律,在空格里填上适当的数。
(1) (2) 8 17 5 7 14 12
12 16
4 12 9 10 11 9 6 24 规律组合,根据规律在 里
3.下面括号里和两个数是按一定填上适当的数。
(1)(8,7),(6,9),(10,5),( ,13)。
(2)(1,3),(5,9),(7,13),(9, )。
4.根据前面两个圈里三个数的关系,在第三个圈里的( )里填上适当的数。 (1) (2)
6 (2)
18 15 15 5 12 ( ) 11 ( ) 9 45 15 50 12 20 15 ( ) ( ) 第三讲 长方形和正方形(一) 同学们已经学会长方形、正方形的周长与面积的计算,利用公式很容易算出它们的面积与周长。但在遇到一些较复杂的有关长方形和正方形的周长和面积计算时,一些同学就会感到棘手。这两讲我们将教给大家一些平移、转化、分解、合并等技巧,使大家在解题中能顺利地找到突破口,化难为易,化繁为简。
例1.有一块长8分米,宽4分米的长方形纸板与两块边长4分米的正方形拼也一个正方形。拼成的正方形的周长是多少分米?
例2. 两个大小数点相同的正方形拼成一个长方形后,周长比原来的两个正方形周长
的和减少6厘米。原来一个正方形的周长是多少厘米?
例3. 求图3和图4的周长。
(单位:米)
图3 图4
例4. 图7是一座厂房的平面图,求这座厂房平面图的周长。
例5. 图9是个多边形,图中每个角都是直角,它的
周长是多少?
例6. 一个正方形被分成3个大小、形状完全不一样的长方形(如图10),每个小长方形的周长都是24厘米,求这个正方形的周长。
图10 例7. 图11是由四个一样大的长方形和一个周长 是4分米的小正方形拼成的一个边长是11分米的大正方形。每个长方形的长和宽各是多少?周长是多少?
11
例8. 一根铁丝长12厘米,能围成几种长和宽都是整厘米数的长方形,每咱长方形的长和宽各是几厘米?围成的正方形的边长是几厘米?
练习与思考
1. 把一个长10厘米,宽5厘米的长方形,分成两个大小一样的正方形,每个正方
形的周长是多少?
2. 用一个长8厘米,宽4厘米的长方形与7个边长4厘米的正方形,拼成一个大正
方形。拼成的大正方形的周长是多少? 3. 求图12、图13的周长。
4. 图14是一座楼房的平面图,这座楼房平面图的周长是多少米?
5. 把一个正方形分成甲、乙两个部分(如图15),比较甲、乙两个部分周长的长短,1米
并求出乙的周长。
6. 有两个相同的长方形,长图17
7厘米,宽3厘米,把它们按图(16)的样子重
叠在一起,这个图形的周长是多少厘米?
7. 一个正方形被分成6个大小、形状完全一样的长方形(如图17),每个长方形的
周长都是14厘米。原来正文武的周长是多少厘米? 8. 一块长方形布,周长是18米,长比宽多1米,这块布的长是几厘米?宽是几米?
能力测试(二) (满分100分,90分钟完成)
一、填空题(每题2分,共20分)。
1.白兔的只数是黑兔的4倍,( )的只数是1份,( )的只数是4份,白兔和黑兔一共有( )份,白兔比黑兔多( )份。
2.红花和黄花共有120朵,红花的朵数是黄花的5倍,黄花有( )朵,红花有( )朵。
3.公鸡和母鸡共有52只,公鸡比母鸡少8只,公鸡有( )只,母鸡有( )只。 4.故事书和科技书一共有84本,故事书比科技书多6本,故事书有( )本,科技书有( )本。
5.山羊的只数比绵羊多45只,山羊的只数是绵羊的4倍,绵羊有( )只,山羊有
( )只。
6.排球的个数比足球少30个,足球的个数是排球的6倍,排球有( )个,足球有( )个。
7.甲数除以乙数商是7,( )是1份,( )是7份,( )比( )多6份。 8.甲、乙两数的和是180,甲数除以乙数商是9,甲、乙两数的差是( ) 9.今年父亲比儿子大25岁,三年后,父亲比儿子大( )岁。
10.小东是小学四年级的学生,他和爸爸今年年龄的和是48岁,三年前,两人年龄的和是( )岁。
二、应用题(每题8分,共80分)。
1.南京长江大桥分为上下两层,上层是公路桥,下层是铁路桥。铁路桥和公路桥共长11270米。铁路桥比公路桥长2270米。南京长江大桥的铁路桥和公路桥各长多少米?
2.大房间面积比小房间大36平方米,大房间的面积是小房间的3倍。大小房间各有多少平方米?
3.甲、乙两船共载乘客623人,若甲船增加34人,乙船减少57人,那么,两船乘恰好相等。两船原来各有乘客多少人?
4.父亲经儿子大30岁,明年父亲的年龄是儿子的3倍。儿子今年多少岁?
5.小玲做一道减法题的时候,把减数个位上的9错写成6,十位上的6错写成9,得到的差是578。请你算一算,正确的差是多少?
6.甲、乙、丙三个组共有图书90本,如果乙组向甲组借3本后,又送给丙组5本,那么,三个组的图书数刚好相等。甲、乙、丙三个组原来各有图书多少本?
7.两个数的和是616,其中一个数个位数是0,如果把0去掉,就与另一个数相同。这两个数各是多少?
第10讲 和倍问题(一)
我们把已知几个数的和及它们之间的倍数关系,求这几个数各是多少的问题称为和倍问题。解答和倍问题,要在已知条件中确定一个数为标准(一般以小数作为标准),假定小数是1倍或1份,再根据其他几个数与小数的倍数关系,确定总和相当于1倍数的多少倍,然后用除法求出小数,再算出其他各数。
和倍问题的数量关系是:
和÷(倍数+1)=小数
小数×倍数=大数
例1.六合农场把98000千克粮食分别存入两个仓库,已条存入第一仓库里的粮食是第二仓库的3倍。两个仓库各存多少千克粮食?
例2.被除数、除数、商三个数的和是212,已知商是2,被除数和除数各是多少? 例3.三篮桃子共有117个,第一篮的桃子是第二篮的2倍,第三篮的桃子是第一篮的3倍。这三篮桃子各有多少个?
例4.两个数的和是682,其中一个加数的个位是0,若把0去掉,则与另一个加数相同。这两个数各是多少?
例5.有两堆棋子,第一堆有67个,第二堆有53个。问:从第一堆中拿出多少个棋子放入第一堆,就能使第一堆的棋子是第二堆了2倍? 练习与思考
1.已知两个数的和是160,大数是小数的3倍,求这两个数。
2.长方形的周长是36分米,已知长是宽的2倍,长方形的面积是多少平方分米? 3.两数相除,商3余4,如果被除数、除数、商及余数相加,和是43,求被除数和除数。
4.姐姐和妹妹共有人民币264元(两人都是整元的钱),姐姐的钱数的个位是0,如果姐姐把自己钱数的个位上的0去掉,恰好和妹妹的钱数相等。姐姐、妹妹各有人民币多少元?
5.甲、乙两人共储蓄人民币1790元,甲取出540元后,乙的钱数比甲的3倍还多50元。甲、乙两人原来各储蓄多少元?
6.王村原有水田325公顷,旱田155公顷,现在计划把一部分旱田改成水田,使全村水田的公顷数相当于旱田的3倍,应该把多少公顷旱田改成水田?
7.甲、乙两箱茶叶共84千克,如果从乙箱取出12千克放入甲箱,则甲箱茶叶的重量是乙箱的2倍。两箱原来各有茶呆多少千克?
8.把一个减法算式里的被减数、减数与差相加,得数是990,已知减数是差的2倍,减数是多少?
第11讲 和倍问题(二)
例1.百货公司卖出花布和白布共395米,卖出的花布是白布的4倍,花布每米6元,白布每米5元,卖出的花布和白布共值多少元?
例2.甲、乙两数之积为2500,是甲、乙两数之和的20倍,而甲数又是乙数的4倍,甲、乙两数各是多少?
例3.甲、乙两人共储蓄1000元,甲取出240元,乙又存入80元,这时甲蓄储的钱正好是乙的3倍。原来甲比乙多储蓄多少元?
例4.光明小学买来足球和篮球共30个,已知买来足球的个数比篮球的2倍少3个,学校买来足球的篮球各多少个?
例5.大水池里有水2600立方米,小水池里有水1200立方米,如果大水池的水以每分23立方米的速度流入小水池,那么,多少分后小水池中的水是大水池的4倍?
练习与思考
1.甲瓶里有酒精470毫升,乙瓶里有酒精190毫升,为了使甲瓶的酒精是乙瓶酒精的2倍,应该把甲瓶的酒精倒入乙瓶多少毫升?
2.两个自然数的和是286,其中一个数的末位数是0,如果把这个0去掉,所得的数与另一个数相同。原来两个数的积是多少?
3.甲、乙两人存款数相等,如果取出30元,乙存入30元,那么,乙的存款数恰好是甲的5倍。甲、乙两人这时各有存款多少元?
4.有两层书架,共186本书。如果从第一层拿走25本书后,第二层的书就比第一层的2倍还多11本。第二层有多少本书?
5.甲、乙两个冷藏库共存鸡蛋1570箱,从甲库运走350箱后,这时乙库存的鸡蛋比甲库剩下的2倍还多80箱。甲、乙两库原来各存鸡蛋多少箱?
6.两个数的和是13002,其中一个数的百位和十位上的数都是6,另一个数百位和十位上的数都是3,如果用0代替这两个数里的6与3,那么,所得的一个数是另一个数的2倍,原来的两个数各是多少?
7.商店运来梨子、苹果、香蕉共53千克,梨子的重量是苹果的3倍少3千克,香蕉的重量是苹果的2倍多2千克,梨子重多少千克?
8.南水池有水3830立方米,北水池有水850立方米,如果南水池里的水以每分32立方米的速度流入北水池,那么,多少分后南水池中的水是北水池的3倍?
9.面值10元的面值5元的钞票若干张,共175元。10元的张数是5元张数的3倍。这两种钞票各几张?
第12讲 差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
例1.暑假里,兄弟两人去池塘钓鱼,哥哥比弟弟多钓20条,哥哥钓的条数是弟弟的3倍。哥哥与弟弟各钓了多少条鱼?
例2.参加学校课外舞蹈小组的同学,女生比男生多45人,女生比男生的4倍少15人,男、女生各有多少人?
例3.两堆煤重量相等,第一堆运走7吨,第二堆运走19吨以后,第一堆剩下的吨数是第二堆的3倍。两堆煤现在各有多少吨?
例4.一个畜牧场,原有山羊和绵羊的只数同样多,如果卖出山羊200只,买进绵羊350只,那么绵羊的只数是山羊的6倍还多50只。畜牧场原有山羊、绵羊各多少只?
例5.有两筐桔子,如果从第一筐拿出9个放入第二筐,则两筐桔子的个数相等;如果从第二筐拿出12个放入第一筐,则第一筐桔子的个数等于第二筐的2倍。原来每筐桔子各有多少个? 练习与思考
1.暑假里,哥哥做的数学题比弟弟多180道,哥哥做的数学题是弟弟的4倍多9道。两人各做多少数学题?
2.甲、乙两人的钱一样多,甲给乙30元,则乙的钱是甲的5倍。甲、乙原来各有多少元?
3.甲粮仓的大米比乙粮仓多600袋,如果从乙粮仓运出300袋给甲粮仓,那么,甲粮仓的大米是乙粮仓的2倍。两粮仓原来各有大米多少袋?
4.两块同样长的花布,第一块卖出25米,第二块卖出7米,剩下的布,第二块的长度是第一块的3倍。这两块布原来各有多少米?
5.已知两个数的商是4,这两个数的差是39。那么,这两个数中较小的一个数是多少? 6.小英的故事书的本数是小娟的3倍。如果小英借给小娟10本故事书,小娟的故事书的本数等于小英的3倍。小英、小娟原来各有故事书多少本?
7.水果店有重量相等的苹果和梨子各一筐,苹果卖出60千克,梨子又放入40千克,结果梨子的重量是苹果的3倍。原来苹果、梨子各有多少千克?
8.四(1)班和四(2)班原有图书的本数一样多。后来,四(1)班又买事新书126本,而四(2)班从本班原有的书中取出234本借给四(3)班。这时,四(1)班图书的本数是四(2)班的3倍。四(1)班和四(2)班原来各有图书多少本?
9.一天,甲、乙、丙三人去郊外钓鱼,甲比乙多钓6条,丙钓的鱼是甲的2倍,比乙多钓22条。他们三人一共钓了多少鱼?
10.甲对乙说:“你给我100元,我的钱将比你多1倍。”乙回答说:“你只要给我10元,我
的钱就比你多5倍。”问:两人各有多少元?
因篇幅问题不能全部显示,请点此查看更多更全内容