您的当前位置:首页正文

简便计算

2023-06-19 来源:独旅网

  江苏省太仓市新区第二小学 金芝 邮编:215413

  教学内容

  苏教版小学数学四年级上册第59-60页例题,及60-61页“想想做做”的第1-5题。

  设计思路

  对于乘法定律的教学,不应仅仅满足于学生理解、掌握乘法定律和运用乘法定律进行一些简便计算,更重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这才是教学的重点及难点。教学中,通过创设情境——猜谜语导入,激发学生的学习兴趣,让学生在“玩”中发现问题,提出猜想、进行验证、总结应用的思路进行的,应该说这样的思路是符合当今新教学理念的。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

  教学目标

  1.让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

  2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。

  3.增强合作意识,激发学生学习数学的兴趣。

  教学重点

  引导学生概括出乘法结合率,并运用乘法结合率进行简便计算。

  教学难点

  乘法结合率的推导过程是学习的难点。

  教学准备

  幻灯片。

  教学过程

  一、猜谜引入,揭示课题

  师:猜谜:“弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。”

  生:(积极举手,低声喊)纽扣。

  师:你为什么会想到是纽扣?

  生:因为纽扣扣错了,衣服穿出去就很难看,会让人笑话。

  师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。

  师:用字母如何表示加法交换律、结合律呢?

  板书:a+b=b+a a+b+c=a+(b+c)

  师:乘法有没有类似的规律?今天我们就来学习乘法的一些运算定律。(板书课题)

  [设计意图:用谜语拉开学习的序幕,激发学生学习的兴趣,活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好了知识铺垫。]

  二、猜测验证,教学新知

  (1)教学乘法交换率。

  师:(猜一猜)乘法可能有哪些运算定律?

  生1:乘法可能有交换律。

  生2:乘法可能有结合律。

  生3:……

  师:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)

  学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)

  [设计意图:提出与旧知相关联的问题,让学生产生疑问、猜想,有效地激发了学习动机。]

  交流。

  生1:我们小组经过讨论认为乘法有交换律。比如:2×4=4×2,0×13=13×0等等。两个乘数的位置变了,但它们的积不变。

  生2:我们也是找了两个数,将它们相乘,发现两个乘数的位置变了,但它们的结果是相等的。

  生3:我们小组也认为乘法有交换律,比如我们班有4个小组,每个组有8人,求一共有多少人?可以列成算式:4×8=32,也可以用8×4=32。这就说明4乘8等于8乘4。因此,乘法和加法一样,也有交换律。

  师:有没有不同意见?(指名让刚才说乘法没有交换律的学生发言。)

  生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如200×8=8×200。

  师:你能用自己的语言描述一下乘法交换律吗?

  结论:两个数相乘,交换乘数的位置,积不变。

  师:谁能用字母来表示呢?

  生:a×b=b×a (板书)

  [设计意图:放手让学生去探索规律,并通过小组合作想办法予以确认,这样不仅充分激发了学生学习的积极性,而且使学生体会了发现新规律的方法。]

  师:最近学校要开展冬季三项比赛,每个班的学生都在练习,看!这是老师在校园里看到的景象。(出示图片:踢毽子)

  师:你能看图把下面的等式填写完整吗?

  3×5=( )×( )

  师:这就是乘法交换率。

  [设计意图:出示例题,巩固所学的新知。让学生在自己的探索中学习,体现了新课程下的自主学习。]

  (2)教学乘法结合率。

  生4:我们发现乘法也有结合律。如:(3×2)×4=3×(2×4)。

  生5:我们也同意这种观点。

  师:我们一起来证明一下这个结论是正确的吗?出示例题2。

  华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每班有23人参加。一共有多少人参见比赛?

  小组讨论,你们是怎样计算的?

  生1:先算出一个年级参加的人数。

  (23×5)×6=115×6=690(人)

  生2:先算出全校有多少个班。

  23×(5×6)=23×30=690(人)

  师:你会把上面的两道算式写成一个等式吗?

  (23×5)×6=  ×(  ×  )

  师:比较等号两边的算式,有什么相同点和不同点?

  生:我觉得右边的算式计算简便,可以直接口算出答案。

  师:非常好,我们在计算的时候,可以根据运算定律来简便计算,这样能节省时间。

  [设计意图:让学生自己感受交换两个乘数的位置,计算起来比较简便,为下面学习试一试部分奠定基础。]

  师:请同学们也写几组这样的等式,把你的发现在小组里交流。能用自己的语言描述一下乘法结合律吗?

  结论:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

  师:你说得很准确,有什么好方法帮助记忆?

  生:我把加法结合律里的“加”换成“乘”,把“和”换成“积”,其余的不变。

  生:我还发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指*在一起,表示“先把前两个数相乘”,第三个手指*过来表示“再和第三个数相乘”;它等于“先把后两个手指*在一起,再把第一个手指*过来”。

  师:这个记忆方法确实很好,我们大家一起来试一试。

  师:怎样用字母表示乘法结合律?

  板书:(a×b)×c=a×(b×c)

  [设计意图:乘法结合律与交换律相比,用语言完整地表述有一定难度。教师引导学生交流各人总结规律时的想法,不仅帮助学生规范了数学语言,而且为学生展示自身才能创造了足够的空间。]

  (3)教学试一试(用简便方法计算)。

  师:刚才我们已经学习了乘法的运算定律,现在看看同学们有没有掌握呢?出示试一试上的习题。(1)23×15×2 (2)5×37×2

  放手让学生们自己做,并能说出各用了什么运算定律?请学生上黑板演示,其余学生独立完成。

  师:运用了乘法的运算率,计算时你有什么体会?

  生1:感觉简便了。

  生2:计算的时候节约了时间,也不会算错了。

  ……

  [设计意图:新授了乘法结合律与交换律之后,直接教学试一试的内容,让学生自己体会乘法结合律与交换律对计算的简便之处,有利于以后计算时能快速运用。]

  三、巩固深化,应用拓展

  师:回想一下,在我们的学习中有没有得到过乘法交换律和结合律的帮助?

  生:我们验算乘法时就应用了乘法的交换律。

  基本练习。想想做做的第1~3题。

  发展练习。利用乘法的交换律和结合律,写出所有和下面算式相等的式子。

  8×6×9=( )

  [设计意图:练习的层次鲜明,目标明确; 促进学生构建新的知识网络。]

  四、全课小结,布置作业

  今天这节课你学到了什么?

  课堂作业:p60~61第4、5

因篇幅问题不能全部显示,请点此查看更多更全内容