您的当前位置:首页正文

二,三阶系统瞬态响应和稳定性

来源:独旅网


《自动控制原理》

实验报告(4)

2011- 2012 学年第 1 学期

专业: 班级: 学号: 姓名:

2011 年 11 月 15 日

一.实验题目:

二、三阶系统瞬态响应和稳定性

二.实验目的:

1. 了解和掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标

准式。 2. 研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn、阻尼比ξ对过渡过程的影

响。

3. 掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标Mp、tp、ts的计

算。

4. 观察和分析Ⅰ型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在

阶跃信号输入时的动态性能指标Mp、tp值,并与理论计算值作比对。

5. 了解和掌握典型三阶系统模拟电路的构成方法及Ⅰ型三阶系统的传递函数表达式。 6. 了解和掌握求解高阶闭环系统临界稳定增益K的多种方法(劳斯稳定判据法、代数

求解法、MATLAB根轨迹求解法)。

7. 观察和分析Ⅰ型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种

瞬态响应。

8. 了解和掌握利用MATLAB的开环根轨迹求解系统的性能指标的方法。

9. 掌握利用主导极点的概念,使原三阶系统近似为标准Ⅰ型二阶系统,估算系统的时

域特性指标。

三.实验内容及步骤

二阶系统瞬态响应和稳定性

1.Ⅰ型二阶闭环系统模拟电路见图3-1-7,观察阻尼比ξ对该系统的过渡过程的影响。改变A3单元中输入电阻R来调整系统的开环增益K,从而改变系统的结构参数。

2.改变被测系统的各项电路参数,计算和测量被测对象的临界阻尼的增益K,填入实验报告。

3.改变被测系统的各项电路参数,计算和测量被测对象的超调量Mp,峰值时间tp,填入实验报告,並画出阶跃响应曲线。

图3-1-7 Ⅰ型二阶闭环系统模拟电路

积分环节(A2单元)的积分时间常数Ti=R1*C1=1S 惯性环节(A3单元)的惯性时间常数 T=R2*C2=0.1S 阻尼比和开环增益K的关系式为:

临界阻尼响应:ξ=1,K=2.5,R=40kΩ

欠阻尼响应:0<ξ<1 ,设R=4kΩ, K=25 ξ=0.316 过阻尼响应:ξ>1,设R=70kΩ,K=1.43ξ=1.32>1

实验步骤: 注:‘S ST’用“短路套”短接!

(1)将函数发生器(B5)单元的矩形波输出作为系统输入R。(连续的正输出宽度足够大的阶跃信号)

① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。

② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度≥3秒(D1单元左显示)。

③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 3V(D1单元右显示)。 (2)构造模拟电路:按图3-1-7安置短路套及测孔联线。

(a)安置短路套 (b)测孔联线

1 2 3 4 5 模块号 A1 A2 A3 A6 B5 跨接座号 S4,S8 S2,S11,S12 S8,S10 S2,S6 ‘S-ST’ 2 3 4 运放级联 运放级联 负反馈 A1(OUT)→A2(H1) A2A(OUTA)→A3(H1) A3(OUT)→A1(H2) 1 信号输入r(t) B5(OUT) →A1(H1) 5 运放级联 A3(OUT)→A6(H1)

跨接元件元件库A11中直读式可变 6 4K、40K、电阻跨接到A3(H1)和 7 70K (IN)之间

8 示波器联接 A6(OUT)→B3(CH1) (3)运行、观察、记录:

×1档 9 B5(OUT)→B3(CH2) ① 运行LABACT程序,选择自动控制

菜单下的线性系统的时域分析下的二阶典型系统瞬态响应和稳定性实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。也可选用普通示波器观测实验结果。

② 分别将(A11)中的直读式可变电阻调整到4K、40K、70K,等待完整波形出来后,点击停止,用示波器观察在三种增益K下,A6输出端C(t)的系统阶跃响应。

二阶系统瞬态响应和稳定性实验结果:

调整输入矩形波宽度≥3秒,电压幅度 = 3V。 ⑴ 计算和观察被测对象的临界阻尼的增益K。 阻尼比:1Ti, 因为是临界阻尼,所以ζ=1,有因为Ti=1S,T=0.1S KT2可计算K为:

积分常数Ti 惯性常数T 0.1 1 0.5 0.2 实验截图:

0.2 0.3 0.1 增益K计算值 2.5 1.25 0.83 1.25 0.5 R=4KΩ时,ζ= 0.3162,系统处于欠阻尼状态

R=40KΩ时,ζ= 1,系统处于临界阻尼状态

R= 70KΩ时,ζ= 1.3229,系统处于过阻尼状态

⑵ 画出阶跃响应曲线,测量超调量Mp,峰值时间tp。

用Matlab计算测量的结果和理论值: k=[25,25,25,20,20,40];

T=[0.1,0.2,0.3,0.1,0.1,0.1]; Ti=[1,1,1,0.5,0.2,0.2]; %%实际输出Mp

A=[4.102,4.570,4.766,4.375,4.844,4.961];

%%实际输出ess

B=[3.086,3.086,3.086,3.086,3.047,3.047]; %%自然频率、阻尼比、超调量、峰值时间计算值

wn=sqrt(k./(Ti.*T))

kesi=1/2.*sqrt(Ti./(k.*T))

Mp=exp(-pi.*kesi./(sqrt(1-kesi.*kesi)))*100 tp=pi./(wn.*sqrt(1-kesi.*kesi)) ts=3./(kesi.*wn) %%超调量测量值 clMp=(A-B)./B*100;

%%测量的峰值时间可直接由截图读取

实验结果:

wn =15.8114 11.1803 9.1287 20.0000 31.6228 44.7214 kesi = 0.3162 0.2236 0.1826 0.2500 0.1581 0.1118 Mp =35.0920 48.6397 55.8010 44.4344 60.4679 70.2256 tp = 0.2094 0.2883 0.3500 0.1622 0.1006 0.0707 ts =0.6000 1.2000 1.8000 0.6000 0.6000 0.6000 clMp = 32.9229 48.0881 54.4394 41.7693 58.9760 62.8159

增益 K (A3) 惯性常数 T (A3) 0.1 25 0.2 0.3 20 40

K=25,T=0.1,Ti=1

0.5 0.1 0.2 1 积分常数 自然频率 阻尼比 超调量Mp(%) 峰值时间tP Ti ωn ξ 计算值 计算值 (A2) 计算值 计算值 测量值 测量值 15.81 11.18 9.128 20.00 31.62 44.72 0.3162 35.09 32.92 0.2094 0.210 0.2236 48.63 48.09 0.2883 0.280 0.1826 55.80 54.44 0.3500 0.360 0.2500 44.43 41.77 0.1622 0.170 0.1582 60.46 58.98 0.1006 0.100 0.1118 70.22 62.82 0.0707 0.070

K=25,T=0.2,Ti=1

K=25,T=0.3,Ti=1

K=20,T=0.1,Ti=0.5

K=20,T=0.1,Ti=0.2

K=40,T=0.1,Ti=0.2

三阶系统瞬态响应和稳定性

Ⅰ型三阶闭环系统模拟电路如图3-1-8所示。

图3-1-8 Ⅰ型三阶闭环系统模拟电路图

积分环节(A2单元)的积分时间常数Ti=R1*C1=1S;

惯性环节(A3单元)的惯性时间常数 T1=R3*C2=0.1S,K1=R3/R2=1; 惯性环节(A5单元)的惯性时间常数 T2=R4*C3=0.5S,K=R4/R=500K/R

该系统在A5单元中改变输入电阻R来调整增益K,R分别为 30K、41.7K、225.2K 。 1).观察和分析Ⅰ型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。

Ⅰ型三阶闭环系统模拟电路图见图3-1-8,分别将(A11)中的直读式可变电阻调整到

30KΩ(K=16.7)、41.7KΩ(K=12)、225.2KΩ(K=2.22),跨接到A5单元(H1)和(IN)之间,改变系统开环增益进行实验。

改变被测系统的各项电路参数,运用劳斯(Routh)稳定判据法、MATLAB的开环根轨迹法、代数求解法,求解高阶闭环系统临界稳定增益K,填入实验报告。

运用MATLAB的开环根轨迹法,求解闭环系统超调量Mp为30%的稳定增益,填入实

验报告,並画出其系统模拟电路图和阶跃响应曲线。 实验步骤: 注:‘S ST’用“短路套”短接!

(1)将函数发生器(B5)单元的矩形波输出作为系统输入R。(连续的正输出宽度足够大的阶跃信号)

① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。

② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度≥6秒(D1单元左显示)。

③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 2.5V(D1单元右显示)。 (2)构造模拟电路:按图3-1-8安置短路套及测孔联线。

(a)安置短路套 (b)测孔联线

模块号 跨接座号 1 信号输入r(t) B5(OUT)→A1(H1) 1 A1 S4,S8 2 运放级联 A1(OUT)→A2(H1) 2 A2 S2,S11,S12 3 运放级联 A2A(OUTA)→A3(H1) 3 A3 S4,S8,S10 4 运放级联 A3(OUT)→A5(H1) 4 A5 S7,S10 5 负反馈 A5B(OUTB)→A1(H2) 5 B5 ‘S-ST’ 跨接元件元件库A11中直读式可变6 30K、41.7K、电阻跨接到A5(H1)和7 225K (IN)之间 8 示波器联接 A5A(OUTA)→B3(CH1)

×1档 9 B5(OUT)→B3(CH2) (3)运行、观察、记录:

① 运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的三阶典型系统瞬态响应和稳定性实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形(时间量程放在×4档)。也可选用普通示波器观测实验结果。

② 分别将(A11)中的直读式可变电阻调整到30K、41.7K、225.2K,等待完整波形出来后,点击停止,用示波器观察A5A单元信号输出端C(t)的系统阶跃响应。

K=2.22时的(衰减振荡)

K =12临界稳定(等幅振荡)

K = 16.7不稳定(发散振荡)

2).观察和验证等效于原三阶系统(图3-1-8)的二阶单位反馈闭环系统

根据主导极点的概念,建立等效于原三阶系统(图3-1-8)的Ⅰ型二阶闭环系统模拟电路图,观察等效后的系统输出及原三阶系统输出,分析其响应曲线的相同点及区别,探讨其区别产生的原因。

图3-1-9 等效于原三阶系统(图3-1-8)的二阶单位反馈闭环系统

实验步骤: 注:‘S ST’用“短路套”短接!

(1)将函数发生器(B5)单元的矩形波输出作为系统输入R。(连续的正输出宽度足够大的阶跃信号)

① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。

② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度≥6秒(D1单元左显示)。

③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 2.5V(D1单元右显示)。 (2)构造模拟电路:按图3-1-9安置短路套及测孔联线。 (a)安置短路套 (b)测孔联线 1 2 3 4

模块号 A1 A2 A5 B5 跨接座号 S4,S8 S2,S11,S12 S10,S11 ‘S-ST’ 1 2 信号输入r(t) 运放级联 B5(OUT)→A1(H1) A1(OUT)→A2(H1) 元件库A11中直读式可变电阻跨接到A2A(OUTA)和A5(IN)之间 元件库A11中直读式可变电阻跨接到A5(IN)和(OUTA)之间 A5A(OUTA)→A1(H2) A5B(OUTB)→B3(CH1) 3 跨接元件/4 119K 5 跨接元件/6 337K 7 8 负反馈 示波器联接 ×1档 9 B5(OUT)→B3(CH2) (3)运行、观察、记录:

① 运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的三阶典型系统瞬态响应和稳定性实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形(时间量程放在×4档)。也可选用普通示波器观测实验结果。

② 等待完整波形出来后,点击停止,用示波器观察A5B单元信号输出端C(t)的系统阶跃响应。示波器的截图详见虚拟示波器的使用。

实验结果分析:

实验结果表明上图阶跃响应曲线与衰减震荡阶跃响应图非常接近,证明利用主导极点估

算系统的性能指标是可行的。但是两图的过渡弧度不完全一样,导致上升时间有差别。这是由于两者相差了一个非闭环主导极点所造成的。

三阶系统瞬态响应和稳定性实验结果

改变图3-1-8所示的实验被测系统(三阶单位反馈闭环系统)的惯性时间常数 T1、T2(分别改变模拟单元A3和A5的反馈电容C2、C3)。(输入矩形波宽度≥6秒,电压幅度 = 2.5V)

1. 计算和观察被测对象临界稳定的增益K(R值)。

运用劳斯(Routh)稳定判据法、MATLAB的开环根轨迹法、代数求解法,求解高阶闭环系统临界稳定增益K: 劳斯(Routh)稳定判据法: 闭环系统的特征方程为: 1G(S)0,(3-1-7)

0.05S30.6S2SK0

a0S3a1S2a2Sa30

(3-1-8)

把式(3.1.7)各项系数代入式(3.1.8)建立得Routh行列表为:

S3S2S1S0a0a1a1a2a0a3a1a3a2a300S3S2S1S00.050.60.60.05K0.6K1K 000.60.05K0为了保证系统稳定,劳斯表中的第一列的系数的符号都应相同,所以 0.6K0由ROUTH 稳定判据判断,得系统的临界稳定增益K=12。

即: 0K12 R41.7K 系统稳定

R41.7KΩ 系统临界稳定K12 K12 R41.7KΩ 系统不稳定

代数求解法:

系统的闭环特征方程D(S)=0中,令S=jω,其解即为系统的临界稳定增益K。 用jω取代式(3-1-7)中的S,则可得:

0.05(j)30.6(j)2jK0

令: 虚部0实部00.0530K0.620220, 得系统的临界稳定增益K=12。

K12

用MATLAB根轨迹求解法: 反馈控制系统的全部性质,取决于系统的闭环传递函数,而闭环传递函数对系统性能的影响,又可用其闭环零、极点来表示。在MATLAB的开环根轨迹图上反映了系统的全部闭环零、极点在S平面的分布情况,将容易求得临界稳定增益K。

线性系统稳定的充分必要条件为:系统的全部闭环极点均位于左半S平面,当被测系统为条件稳定时,其根轨迹与S平面虚轴的交点即是其临界稳定条件。

模拟电路的各环节参数代入式(3.1.4),该电路的开环传递函数为:

G(S)KK (3-1-6) 32S(0.1S1)(0.5S1)0.05S0.6SS

据式(3-1-6)化简为:

G(S)20K 根轨迹增益 Kg20K S312S220SKgS12S20SKg32该电路的闭环传递函数为:

(S) (3-1-9)

进入MATLAB--rlocus(num,den),按式(3-1-9)设定:

num=[20];

den=[1 12 20 0]; rlocus(num,den) v=[-11.5 0.5 -6 6]; axis(v) grid

得到按式(3-1-9)绘制的MATLAB开环根轨迹图,如图3-1-18所示

图3-1-18 MATLAB的开环根轨迹图

在图3-1-18的根轨迹上找到虚轴的交点(实轴值为0),即为系统的临界稳定增益:K(Gain)=12。

当Ti,T为其他值时的K的理论值计算方法一样,不再一一详述

2. 运用MATLAB的开环根轨迹法,求解闭环系统超调量Mp为30%的稳定增益,並画出

其系统模拟电路图和阶跃响应曲线(调整被测对象的增益K(R值)来改变增益)。

T1=0.1,T2=0.5时,等幅震荡

G(S)20K 32S12S20S

用Matlab画图计算临界增益

num=[20];

den=[1 12 20 0]; rlocus(num,den)

v=[-11.5 0.5 -6 6]; axis(v)

超调量Mp30%使,为其阶跃响应曲线为:(此时为闭环传递函数)

num=[20*2.29];

den=[1 12 20 20*2.29]; step(num,den)

当T1=0.1,T2=1时,等幅震荡

G(S)10K

S311S210S

用Matlab画图计算临界增益

num=[10];

den=[1 11 10 0]; rlocus(num,den)

v=[-11.5 0.5 -6 6]; axis(v)

超调量Mp30%使,其阶跃响应曲线为:(此时为闭环传递函数)

num=[10*1.4];

den=[1 11 10 10*1.4]; step(num,den)

当T1=0.2,T2=0.5时,等幅震荡

G(S)10K 32S7S10S

用Matlab画图计算临界增益

num=[10];

den=[1 7 10 0]; rlocus(num,den)

v=[-11.5 0.5 -6 6]; axis(v)

超调量Mp30%使,其阶跃响应曲线为:(此时为闭环传递函数)

num=[10*1.71];

den=[1 7 10 10*1.71];

step(num,den)

当T1=0.2,T2=1时,等幅震荡

G(S)5K 32S6S5S

用Matlab画图计算临界增益

num=[5];

den=[1 6 5 0]; rlocus(num,den)

v=[-11.5 0.5 -6 6]; axis(v)

超调量Mp30%使,其阶跃响应曲线为:(此时为闭环传递函数)

num=[5*1.13];

den=[1 6 5 5*1.13]; step(num,den)

惯性时间常惯性时间常数 T1(A3) 数 T2(A5) 0.1 0.2 0.5 1 0.5 1 K 临界稳定(等幅振荡) 计算值 12 11 7 6 测量值 稳定(衰减振荡) Mp≤30% 11.9 10.9 7.03 6.18 2.29 1.40 1.71 1.13

3. 按上表的参数,规定闭环系统超调量Mp为30%,运用MATLAB的开环根轨迹法,根

据主导极点的概念,使原三阶系统近似为标准Ⅰ型二阶系统,並画出其系统模拟电路图和阶跃响应曲线。

当T1=0.1,T2=0.5时,开环传递函数G(S)20K,闭环传递函数32S12S20S(S)

20K,闭环系统超调量Mp为30%时,K=2.29

S312S220S20K %%求出闭环极点,去除非主导极点 den=[1 12 20 20*2.29]

roots(den)%% ans =-10.5119 -0.7441 + 1.9502i -0.7441 - 1.9502i step([4.357],[1,0.7441*2,4.357]) hold on

step([2.29*20],[0.05*20,0.6*20,1*20,2.29*20]) hold off

实验结果分析:

实验结果表明等效二阶阶跃响应曲线与实际三阶系统阶跃响应曲线非常接近,证明利用主导极点可简化系统的设计与实现。但是两图不完全一样,这是由于两者相差了一个闭环非主导极点所造成的。

因篇幅问题不能全部显示,请点此查看更多更全内容