反函数的反函数的符号

发布网友 发布时间:2022-04-22 09:55

我来回答

2个回答

热心网友 时间:2022-05-21 13:45

反函数的符号记为f -1(x)。

反函数符号是记录一个函数的反函数的符号,英文为inverse function,中文为反函数。函数 f 的反函数就念成 “ 函数 f 反函数 ”,念成其他都是不对的。

反函数的定义不算很明确,但是说到底就是把y=f(x)解出来,表示成x=g(y),但是这个函数并不是f(x)的反函数,这个时候虽然表示形式不同,

但和y=f(x)实质上还是同一个函数,交换xy得到y=g(x),这个函数才是f(x)的反函数。所以要求反函数就可以直接把xy交换,解出y=g(x)=f-1(x)就是反函数。

扩展资料:

定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。

在证明这个定理之前先介绍函数的严格单调性。

设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。

证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。

而由于f的严格单增性,对D中任一x'<x,都有y'<y;任一x''>x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。

任取f(D)中的两点y1和y2,设y1<y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。

若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。

因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。

参考资料来源:百度百科-反函数

热心网友 时间:2022-05-21 13:46

反函数的符号记为f -1(x),在中国的教材里,反三角函数记为arcsin,arccos等等,但是在欧美一些国家,sinx的反函数记为sin-1(x)。咋看咋感觉这记号大有来头,怎么就觉得和x这种记号有些关系呢?
事实上,这种想法是对的,数学里没有无缘无故的规定。x^-1表示1/x,那么f^-1(x)与这是否有些关系呢?下面举几个例子来说明这点。当然,f^-1(x)肯定和1/f(x)不等,但是确实有与之很相近的性质。
1:反函数的反函数
为了好看以及对比,我有时会把f(x)写成f.对比,我把我想各位应该很好理解,反函数的反函数当然就是原函数,写成数学语言就是(f)=f,看看,这是不是有点像指数的运算法则:(x)=x呢?
2:反函数的导函数
这个应该就很像了。这也是高等数学的内容,中学同学就看不懂了,所以有些东西必须等到后面才能懂的。
(f(x))’=1/f'(y)
用自然语言来说就是,反函数的导数,等于原函数导数的倒数。这话有点绕,不过应该能读懂,这个似乎就进一步揭示了反函数符号的意义。
在这里要说明的是,y=x的反函数应该是x=y。只不过在通常的情况下,我们将x写作y,y写作x,以符合习惯。所以,虽然反函数和原函数不互为倒数,但是其导函数却是互为倒数。
3:反函数的复合函数
话说这个内容属于高等数学的内容了。大伙想想函数里面最简单最基本的函数是什么函数?不用说,肯定就是我们的恒等函数y=x,这就和我们数字里面的1一般地位,所以,我们记恒等函数为“1x”。
数字的基本运算就是加减乘除,而函数也有运算,虽然也有加减乘除,但是属于函数自己的,就是复合与反函数。我们知道在实数里,x与x的乘积等于1,在函数的复合运算里,也有类似的性质,函数f和g的复合记为f○g,那么下面的性质成立
f○f=1x
1x○f=f○1x=f
这第一个式子已经说明很多问题。实际上,这些都是属于高等代数的内容,在每一个封闭的系统里,都有一个“单位1”,都有自己的运算法则,函数里的就是1x,实数里的就是数字1等等。要深刻理解这些,也只有大家接触群论以后才会深入理解。这里也只是做点皮毛而已。我将在后面另起一文,介绍函数的“幂”的概念,就如同数的幂一样。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com