孪生质数的研究

发布网友 发布时间:2022-04-22 09:49

我来回答

1个回答

热心网友 时间:2023-08-02 05:30

早在20世纪初,德国数学家兰道就推测孪生素数有无穷多,许多迹象也越来越支持这个猜想。最先想到的方法是使用欧拉在证明素数有无穷多个所采取的方法。设所有的素数的倒数和为:

如果素数是有限个,那么这个倒数和自然是有限数。但是欧拉证明了这个和是发散的,即是无穷大。由此说明素数有无穷多个。1919年,挪威数学家布隆仿照欧拉的方法,求所有孪生素数的倒数和:

如果也能证明这个和比任何数都大,就证明了孪生素数有无穷多个了。这个想法很好,可是事实却违背了布隆的意愿。他证明了这个倒数和是一个有限数,这个常数就被称为布隆常数:b=1.90216054…布隆还发现,对于任何一个给定的整数m,都可以找到m个相邻素数,其中没有一个孪生素数。
1920年代,通过使用著名的筛理论(Sieve theory,基于埃拉托斯特尼筛法的理论),挪威的维果·布朗(Viggo Brun)证明了2能表示成两个最多有9个素数因子的数的差。这个结论已经有些近似于孪生素数猜想了。可以看到,只要将这个证明中的“最多有9个素数因子的数”改进到“最多有1个素数因子的数”,就可以证明孪生素数猜想了。
1966年由已故的我国数学家陈景润利用筛法(sieve method)所取得的。陈景润证明了:存在无穷多个素数p,使得p+2要么是素数,要么是两个素数的乘积。这个结果与他关于 Goldbach 猜想的结果很类似。一般认为,由于筛法本身的局限性,这一结果在筛法范围内很难被超越。
2013年5月14日,《自然》(Nature)杂志在线报道张益唐证明了“存在无穷多个之差小于7000万的素数对”,这一研究随即被认为在孪生素数猜想这一终极数论问题上取得了重大突破,甚至有人认为其对学界的影响将超过陈景润的“1+2”证明。在最新研究中,张益唐在不依赖未经证明推论的前提下,发现存在无穷多个之差小于7000万的素数对,从而在孪生素数猜想这个重要问题的道路上前进了一大步。
孪生素数猜想可以弱化为“能不能找到一个正数,使得有无穷多对素数之差小于这个给定正数”,在孪生素数猜想中,这个正数就是2。而张益唐找到的正数是“7000万”。尽管从2到7000万是一段很大的距离,《自然》的报道还是称其为一个“重要的里程碑”。正如美国圣何塞州立大学数论教授Dan Goldston所言,“从7000万到2的距离(指猜想中尚未完成的工作)相比于从无穷到7000万的距离(指张益唐的工作)来说是微不足道的。”
2013年5月13日,张益唐在美国哈佛大学发表主题演讲,介绍了他的这项研究进展。《自然》的报道称,如果这个结果成立,就是第一次有人正式证明存在无穷多组间距小于定值的素数对。换言之,张益唐将给孪生素数猜想证明开一个真正的“头”。世界顶级数学期刊《数学年刊》(Annals of Mathematics)将准备接受张益唐作出证明的这篇文章,审稿人还评价“其证明是对的,并且是一流的数学工作”。
张益唐的论文在5月14号在网络上公开,两个星期后的5月28号,这个常数下降到了6000万。仅仅过了两天的5月31号,下降到了4200万。又过了三天的6月2号,则是1300万。次日,500万。6月5号,40万。在英国数学家Tim Gowers等人发起的“Polymath”计划中,孪生素数问题成为了一个在全球数学工作者中利用网络进行合作的一个典型。人们不断的改进张益唐的证明,进一步拉近了与最终解决孪生素数猜想的距离。截至2014年10月9日 (2014-10-09)[update], 素数对之差被缩小为 ≤ 246 。从246到2,虽然离孪生质数的桂冠近在咫尺,但道路越来越艰难,谁能摘冠、何时摘冠不得而知。 证明孪生素数猜想的另一类结果则是估算性结果。 这类结果估算的是相邻素数之间的最小间隔Δ, 更确切地说是:
翻译成白话文, 这个表达式所定义的是两个相邻素数之间的间隔, 与其中较小的那个素数的对数值之比在整个素数集合中所取的最小值。 很显然, 孪生素数猜想如果成立, 那么Δ必须等于 0。因为孪生素数猜想表明pn+1-pn=2对无穷多个n成立,而ln(pn)→∞,因此两者之比的最小值对于孪生素数集合(从而对于整个素数集合也)趋于零。不过要注意,Δ=0只是孪生素数猜想成立的必要条件,而不是充份条件。换句话说,如果能证明Δ≠0,则孪生素数猜想就不成立;但证明Δ=0却并不意味着孪生素数猜想就一定成立。
对Δ最简单的估算来自于素数定理。按照素数定理,对于足够大的x,在x附近素数出现的几率为, 这表明素数之间的平均间隔为ln(x)(这也正是Δ的表达式中出现 ln(pn)的原因),从而给出的其实是相邻素数之间的间隔与平均间隔的比值,其平均值显然为1。平均值为 1, 最小值显然是小于等于 1, 因此素数定理给出Δ≤1。
对Δ的进一步估算始于Hardy和Littlewood。一九二六年,他们运用圆法(circle method)证明了假如广义Riemann猜想成立,则Δ≤2/3。这一结果后来被Rankin改进为Δ≤3/5。但这两个结果都有赖于本身尚未得到证明的广义Riemann猜想, 因此只能算是有条件的结果。一九四零年,Erdös利用筛法首先给出了一个不带条件的结果:Δ<1(即把素数定理给出的结果中的等号部分去掉了)。此后Ricci于一九五五年,Bombieri和Davenport于一九六六年,Huxley于一九七七年,分别把这一结果推进到Δ≤15/16,Δ≤(2+√3)/8≈0.4665及 Δ≤0.4425。Goldston和Yildirim之前最好的结果是Maier在一九八六年取得的Δ≤0.2486。
2003年,Goldston和Yildirim发表了一篇论文,声称证明了Δ=0。但2003年4月23日,Andrew Granville (University de Montreal)和Kannan Soundararajan(University of Michigan)发现了Goldston和Yildirim证明中的一个错误。2005年,他们与Janos Pintz合作完成了证明。此外,若Elliott-Halberstam猜想成立,孪生素数猜想的弱化版本——存在无穷多对相距16的素数——在Δ=0时也会成立。
Δ=0被证明后人们的注意力自然就转到了研究Δ趋于0的方式上来。 孪生素数猜想要求Δ ~ [log(pn)](因为pn+1-pn=2对无穷多个n成立)。Goldston和Yildirim的证明所给出的则是 Δ ~ [log(pn)],两者之间还有相当距离。 但是看过Goldston和Yildirim手稿的一些数学家认为,Goldston和Yildirim所用的方法存在改进的空间。这就是说,他们的方法有可能可以对Δ趋于0的方式作出更强的估计。因此Goldston和Yildirim的证明, 其价值不仅仅在于结果本身,更在于它很有可能成为未来一系列研究的起点。 1849年,阿尔方·德·波利尼亚克提出了更一般的猜想:对所有自然数k,存在无穷多个素数对(p,p+2k)。k=1的情况就是孪生素数猜想。因此,波利尼亚克有时也被认为是孪生素数猜想的提出者。
1921年,英国数学家哈代和李特尔伍德提出了以下的强化版猜想:设为前N个自然数里孪生素数的个数。那么
其中的常数是所谓的孪生素数常数,其中的p表示素数。
哈代和李特尔伍德的猜测实际上是存在已久的孪生素数猜想的加强版。孪生素数猜想是指“孪生素数有无穷多个”。这个猜想至今仍未被证明。然而,哈代和李特尔伍德的猜测并不是需要建立在孪生素数猜想成立的前提上。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com