e的定义是什么?

发布网友 发布时间:2022-04-23 08:31

我来回答

2个回答

热心网友 时间:2022-06-18 10:27

e被称为欧拉常数,纳皮尔常数。

这个常数的求解是通过泰勒级数展开式,即e=1+1+1/2!+1/3!+...+1/n!,其中n!表示阶乘的意思。这个数是一个超越数,无限不循环的。这个数具有很重要的意义,在很多科学领域都有运用。在泰勒展开式部分有很详细的叙述。

e=1+1+1/2!+1/3!+...+1/n!用计算机计算出来就是:e=2.718281828…

扩展资料

在数学中,有一些横贯所有分支的精选魔术常数。在我们的集体历史中不断发现的这些常数为我们的日常生活提供了数字基础。像周期表中的化学元素一样,数学中的特殊常数也是基础。仅举几例,我们有零(0),亲爱的圆周率pi(一3.142),负一的平方根(i),当然还有指数国王,欧拉常数"e"(一2.718)。

重点是深入研究"欧拉数"(也称为"纳皮尔数"),或更常见的词是e。对于初学者来说,数字e处于指数关系的关键,特别是与任何具有持续增长的事物有关。

热心网友 时间:2022-06-18 10:27

自然常数。

e是一个实数。是一种特殊的实数,称之为超越数。据说最早是从计算 (1+1/x)^x 当x趋向于无限大时的极限引入的。当然e也有很多其他的计算方式,例如 e=1+1/1!+1/2!+1/3!+…。

e作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。

扩展资料:

因为e=2.7182818284...,极为接近循环小数2.71828(1828循环),那就把循环小数化为分数271801/99990,所以可以用271801/99990表示为e最接近的有理数约率,精确度高达99.9999999(7个9)% 。

自然常数也和质数分布有关。有某个自然数a,则比它小的质数就大约有个。在a较小时,结果不太正确。但是随着a的增大,这个定理会越来越精确。这个定理叫素数定理,由高斯发现。

参考资料来源:百度百科-自然常数

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com