发布网友 发布时间:2022-04-23 09:36
共6个回答
热心网友 时间:2023-10-09 17:01
既然是用100元钱买100双鞋子,
那么大鞋买11双,中鞋买40双,小鞋买49双。
5×11+40×1+49×0.1=99.9。
只比100元少了0.1元,这是最接近100元的购买方式。
小学数学解题方法和技巧。
中小学数学,还包括奥数,在学习方面要求方法适宜,有了好的方法和思路,可能会事半功倍!那有哪些方法可以依据呢?希望大家能惯用这些思维和方法来解题!
形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。
形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。
实物演示法
利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。
这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。
二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。
特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。
图示法
借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。
图示法直观可靠,便于分析数形关系,不受逻辑推导*,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。
在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。
列表法
运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。
它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。
验证法
你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。
验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。
(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。
(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。
(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)
按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。
(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。
热心网友 时间:2023-10-09 17:01
大鞋18双,中鞋两双,小鞋80双
热心网友 时间:2023-10-09 17:02
设5元、1元、0.05元的各买x、y、z个。
有x+y+z=100
5x+y+0.05z=100
把y=100-x-z代入第二个方程得4x=0.05z即z=80x
代入方程组解得x=0 y=100 z=0
简便方法:所买东西的平均价格是100/100=1元,所以只有其他两种商品的平均价格为1元时,才能恰好买100样东西,由于其他两种东西的平均价格不是1元,所以其他两种不买,买100样1元的东西符合条件。
热心网友 时间:2023-10-09 17:02
这个题可以这么解,100÷1=100。一百元钱买中鞋刚好一百双。大鞋买0双,小鞋买0双。
热心网友 时间:2023-10-09 17:03
答:设大鞋X双,中鞋y双,小鞋z双,那么
x+y+z=100 (1)
5x+y+0.1z=100 (2)
(1)一(2)得
一5x+0.9Z=O‘‘
即5x=o.9z
x=9/50z
所以9/50z必须是整数,因此当Z=100时
X=18,z=50时,x=9,故x=9,Z=50,
5×9+50x0.1=50,
剩下的50元正好买50双这了鞋
答:可以买9双大鞋,50双中鞋,50双小鞋。
热心网友 时间:2023-10-09 17:04
三元一次方程的解法:用代入法或加减法将方程进行消元,将三元一次方程组转化为二元一次方程组,然后再转化为一元一次方程,从而求出方程的解。

三元一次方程组
如果一个方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。常用的未知数有x、y、z。三元一次方程组的解题思路主要是应用消元法。

三元一次方程组的解法步骤
1、利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;
2、解这个二元一次方程组,求得两个未知数的值;
3、将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解。