(必要条件)和(充分条件)的区别是什么?

发布网友 发布时间:2022-04-23 02:32

我来回答

5个回答

热心网友 时间:2022-05-11 11:15

如果没有事物情况A,则必然没有事物情况B,也就是说如果有事物情况B则一定有事物情况A,那么A就是B的必要条件。从逻辑学上看,B能推导出A,A就是B的必要条件,等价于B是A的充分条件。

必要条件是数学中的一种关系形式。如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件,记作B→A,读作“B含于A”。数学上简单来说就是如果由结果B能推导出条件A,我们就说A是B的必要条件。

充分条件:如果A能推出B,那么A就是B的充分条件。其中A为B的子集,即属于A的一定属于B,而属于B的不一定属于A,具体的说若存在元素属于B的不属于A,则A为B的真子集;若属于B的也属于A,则A与B相等。

拓展资料:

必要条件例子:

简单地说,不满足A,必然不满足B(即,满足A,未必满足B),则A是B的必要条件。例如:

1. A=“地面潮湿”;B=“下雨了”。

2. A=“认识26个字母”;B=“能看懂英文”。

3. A=“听过京剧”;B=“能体会到京剧的美”。

例子中A都是B的必要条件,确切地说,A是B的必要而不充分的条件:其一、A是B发生必需的;其二,A不必然导致B。在例子中,地面潮湿不一定就是下雨了;认识了26个字母不一定就能看懂英文;听过京剧未必能体会到京剧的美,这说明A不必然导致B。

充分条件例子:

1. A=“下雨”;B=“地面湿润”。

2. A=“烧柴”;B=“会产生CO2”。

例子中A都是B的充分条件,确切地说,A是B的充分而不必要的条件:其一、A必然导致B;其二,A不是B发生必需的。在例子中,下雨会导致地面湿润,但地面湿润不一定是由下雨导致的,可能是由于泼水导致的;烧柴一定会产生CO2,但产生CO2可能为燃烧甲醇等。这些说明A不是B发生必需的。所以A是B的充分条件,也是不必要条件,即充分不必要条件。

充分条件-百度百科必要条件-百度百科

热心网友 时间:2022-05-11 12:33

区别:

假设A是条件,B是结论

由A可以推出B~由B可以推出A~~则A是B的充要条件(充分且必要条件)

由A可以推出B~由B不可以推出A~~则A是B的充分不必要条件

由A不可以推出B~由B可以推出A~~则A是B的必要不充分条件

由A不可以推出B~由B不可以推出A~~则A是B的不充分不必要条件

简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件

如果能由结论推出 条件,但由条件推不出结论。此条件为必要条件

如果既能由结论推出条件,又能有条件 推出结论。此条件为充要条件

扩展资料:

如果A能推出B,那么A就是B的充分条件。其中A为B的子集,即属于A的一定属于B,而属于B的不一定属于A,具体的说若存在元素属于B的不属于A,则A为B的真子集;若属于B的也属于A,则A与B相等。

定义:如果有事物情况A,则必然有事物情况B;如果没有事物情况A而未必没有事物情况B,A就是B的充分而不必要条件,简称充分条件。紧跟在“如果”之后 [1]  。

充分条件是逻辑学在研究假言命题及假言推理时引出的。

陈述某一事物情况是另一件事物情况的充分条件的假言命题叫做充分条件假言命题。充分条件假言命题的一般形式是:如果p,那么q。符号为:p→q(读作“p蕴涵于q”)。例如“如果物体不受外力作用,那么它将保持静止或匀速直线运动”是一个充分条件假言命题。

根据充分条件假言命题的逻辑性质进行的推理叫充分条件假言推理。充分条件假言推理,就是以充分条件假言命题为大前提,通过肯定前件或否定后件而得出结论的推理。这种推理结构由三部分组成,其中大前提是充分条件假言判断,小前提和结论是由这个充分条件假言判断的前件或后件组成的判断。列宁说过:“任何科学都是应用逻辑。”

有命题p、q,如果p推出q,则p是q的充分条件,q是p的必要条件;如果p推出q且q推出p,则p是q的充分必要条件,简称充要条件。

例如:x=y推出x^2=y^2,则x=y是x^2=y^2的充分条件,x^2=y^2是x=y的必要条件。

a、b一正一负推出ab<0,ab<0推出a、b一正一负,则a、b一正一负和ab<0互为充要条件。

如果p推出q,则p是q的充分条件,q是p的必要条件举例如下

有命题p、q,如果p推出q,则p是q的充分条件,q是p的必要条件;如果p推出q且q推出p,则p是q的充分必要条件,简称充要条件。

例如:x=y推出x^2=y^2,则x=y是x^2=y^2的充分条件,x^2=y^2是x=y的必要条件。

a、b一正一负推出ab<0,ab<0推出a、b一正一负,则a、b一正一负和ab<0互为充要条件。

如果p推出q,则p是q的充分条件,q是p的必要条件举例如下

若没有Q成立,则P也不成立

Q是P的必要条件

如:

P: x=1 Q: x^2=1

P是Q的充分条件而不是必要条件(没有x=1,当x=-1,x^2=1)

Q是P的必要条件,没有x^2=1,就没有x=1

必要条件是数学中的一种关系形式。如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件,记作B→A,读作“B含于A”。数学上简单来说就是如果由结果B能推导出条件A,我们就说A是B的必要条件。

简单地说,不满足A,必然不满足B(即,满足A,未必满足B),则A是B的必要条件。例如:

1. A=“地面潮湿”;B=“下雨了”。

2. A=“认识26个字母”;B=“能看懂英文”。

3. A=“听过京剧”;B=“能体会到京剧的美”。

例子中A都是B的必要条件,确切地说,A是B的必要而不充分的条件:其一、A是B发生必需的;其二,A不必然导致B。在例子中,地面潮湿不一定就是下雨了;认识了26个字母不一定就能看懂英文;听过京剧未必能体会到京剧的美,这说明A不必然导致B。

参考资料:百度百科-充分条件 百度百科-必要条件

热心网友 时间:2022-05-11 14:08

充分条件:有条件可以推出结论;

必要条件:有结论可也推出条件。

要想正确判断是充分条件还是必要条件,首先要搞清楚哪个是条件,哪个是结论,然后再看有哪边能推出哪边。

必要条件是数学中的一种关系形式。如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件,记作B→A,读作“B含于A”。数学上简单来说就是如果由结果B能推导出条件A,我们就说A是B的必要条件。

如果A能推出B,那么A就是B的充分条件。其中A为B的子集,即属于A的一定属于B,而属于B的不一定属于A,具体的说若存在元素属于B的不属于A,则A为B的真子集;若属于B的也属于A,则A与B相等。

拓展资料:

实例:

如果一盏灯前面有两个并联的开关,那么,只要有一个开关闭合,灯就可以亮,一个开关闭合就是灯亮的充分条件。反过来,只要灯亮了,就至少有一个开关是闭合的,灯亮就是开关闭合的必要条件。 

如果一盏灯前面只一个开关,只要开关闭合灯就一定亮(灯泡坏了除外),只要灯亮开关就一定闭合,灯亮就是开关闭合的充分必要条件。

热心网友 时间:2022-05-11 15:59

必要条件:p推不出q,q能推出p
充分条件:p能推出q,q推不出p
X=0且Y=0 是 X+Y=0 的充分条件 (但不必要)
X+Y=0是X=0 且 Y=0的必要条件(但不充分)
X+Y=0是X=-Y的充分必要条件
扩展资料
必要非充分:Q=P但是P!=Q(!=:不能推出,就是中间画一条斜线).
必要条件:Q=P.
认为两者的区别在于:
必要非充分明确说明(或者说*)了P与Q之间 相互 的逻辑关系,也就是说对P能否推出Q,以及Q能否推出P都作出了说明.
必要条件仅仅说明了Q能推出P,但是对于P能否推出Q没有作出说明与*.
必要非充分条件与充要条件都属于必要条件.不过默认来说必要条件更多是指前者(即必要非充分条件).最后建议一下,为了避免混淆,平常做题特别是考试推荐说明是属于哪一种必要条件.

热心网友 时间:2022-05-11 18:07

A可以推出B则A为B的充分条件 B为A的必要条件

例如 ,我是一个男人,推出我是一个人
则 “我是一个男人” 是 “我是人”的充分条件
“我是人” 是 “我是男人” 的必要条件
因为是男人这个条件充分证明了我是人 而我是男人要求我有必要首先是人
又比如说,我是中国人的必要条件有:我是地球人。这个条件的必要性不用说了吧。重点是,我是中国人可以证明我是地球人,我是中国人需要我是地球人。所以“我是地球人”是“我是中国人”的必要条件。
另外,我是中国人的充分条件有:我是浙江人。因为浙江人的身份充分证明了我是中国人。因此“我是浙江人”是“我是中国人”的充分条件。
两者区别是很简单的:能推出它的,都是充分的;它能推出的,都是必要的。
而且你也看的出来,充分条件一般比必要条件具体,细节更多。像是浙江人这个条件其实是地球人——中国人——浙江人这三个细节加起来。既然要充分,那就要具体。
而必要条件一般比较宽泛,只要把必要的东西弄好了就可以了。像是地球人没有中国人具体。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com