平行四边形ABCD的面积为3,M是AD中点,求阴影部分面积

发布网友

我来回答

2个回答

热心网友

面积和△BAM+△CAM=1/2*1/2AM*AB*2=1/2*1/2AD*AB=1/4*AB*AB=3/4
容易证明△AMG与△BCG相似,则以G为顶点的两个三角形的高之比为AM/BC=1:2
因此G为顶点AGM的高是1/3根号3
则△GAM面积为1/2*1/2*根号3*1/3根号3=1/4
因此阴影部分面积是3/4-1/4=1/2

热心网友

中间那个点设为o
三角形aom与三角形cbo相似,相似比1:2,如果平行四边形的高为h,这两个三角形的高则分别为1/3h,2/3h
ad乘h=3,则三角形amb面积3/4,amc面积3/4,aom面积=1/2乘1/2ad乘1/3h=1/4
阴影面积=amb面积+amc面积-2aom面积=3/4+3/4-2乘1/4=1

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com