求曲线的凹凸区间及拐点

发布网友 发布时间:2022-04-20 15:37

我来回答

3个回答

热心网友 时间:2023-07-18 09:24

一、(1)y'=4-2x,y''=4>0,因此函数在R上恒为下凸函数

(2)y'=arctanx+x/(1+x^2),y''=1/(1+x^2) + [(1+x^2)-2x^2]/(1+x^2)^2

=2/(1+x^2)^2 > 0,因此函数在 R 上恒为下凸函数

二、(1)y'=3x^2-10x+3,y''=6x-10,令 y''>0 得 x>5/3,令 y''<0 得 x<5/3,

所以函数在(-∞,5/3)上为上凸函数,在(5/3,+∞)上为下凸函数,

拐点为(5/3,20/27)。

(2)y' = 2x/(x^2+1),y '' = [2(x^2+1)-2x*2x]/(x^2+1)^2=2(1-x^2)/(1+x^2)^2,

令 y ''>0 得 -1<x<1,令 y''<0 得 x<-1 或 x>1,

因此函数在(-∞,-1)上为上凸函数,在(-1,1)上为下凸函数,在(1,+∞)上为上凸函数,

拐点为(-1,ln2)和(1,ln2)。

例如:

y=x^4-6x²-5

y'=4x³-12x

y"=12x-12

=12(x-1)

y">0,x>1

凹区间:(1,+∞)

y"<0,x<1

凸区间:(-∞,1)

y"=0,x=1

y=1-6-5=-10

拐点:(1,-10)

y=2x/(1+x²)

y'=[2(1+x²)-2x(2x)]/(1+x²)²

=2(1-x²)/(1+x²)²

y"=2[(-2x)(1+x²)²-2(1-x²)(1+x²)(2x)]/(1+x²)^版4

=2[-2x-2x³-4x+4x³]/(1+x²)³

=4x(x²-3)/(1+x²)³

=4x(x+√权3)(x-√3)/(1+x²)³

y">0,-√3<x<0或x>√3

凹区间:(-√3,0)U(√3,+∞)

凸区间:(-∞,-√3)U(0,√3)

y"=0

x=-√3,y=-√3/2

x=0,y=0

x=√3,y=√3/2

拐点:(-√3,-√3/2),(0,0),(√3,√/2)

扩展资料:

可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:

⑴求f''(x);

⑵令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;

⑶对于⑵中求出的每一个实根或二阶导数不存在的点,检查f''(x)在左右两侧邻近的符号,那么当两侧的符号相反时,点(,f())是拐点,当两侧的符号相同时,点(,f())不是拐点。

参考资料来源:百度百科-拐点

热心网友 时间:2023-07-18 09:25

先求出二阶导数y",y"不存在或等于0的点就是拐点,y">0的区间是凹区间,<0就是凸区间

热心网友 时间:2023-07-18 09:25


第四题给你解答了,第五题同理做

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com