求二次函数性质 规律

发布网友 发布时间:2022-04-22 00:26

我来回答

3个回答

热心网友 时间:2023-05-28 00:31

二次函数的性质和规律主要包含以下几个方面:

I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
1. y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.) 则称y为x的二次函数。
2. 二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式
1. 一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
2. 顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]
3. 交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a

III.二次函数的图像
在平面直角坐标系中作出二次函数y=x�0�5的图像, 可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为 P [ -b/2a ,(4ac-b^2;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数 Δ= b^2-4ac>0时,抛物线与x轴有2个交点。 Δ= b^2-4ac=0时,抛物线与x轴有1个交点。 Δ= b^2-4ac<0时,抛物线与x轴没有交点。

V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2;+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax^2;+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。

热心网友 时间:2023-05-28 00:31

a大于0,开口向上a小于0,开口向下
-b/2a就是对称轴b平方-4ac就是决定他和x轴是否有交点

热心网友 时间:2023-05-28 00:32

请看图:

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com