发布网友 发布时间:2024-10-23 22:17
共1个回答
热心网友 时间:2024-11-01 01:32
解:(1)设a与c的夹角为θ,
当x=π6时,a=(32,12),
∴cosθ=a•c|a||c|=32×(-1)+12×0(32)2+(12)2•(-1)2+02=-32.
∵θ∈[0,π],∴θ=5π6.
(2)由题意可得f(x)=2a•b+1
=2(-cos2x+sin xcos x)+1
=2sin xcos x-(2cos2x-1)
=sin 2x-cos 2x
=2sin(2x-π4),
∵x∈[π2,9π8],∴2x-π4∈[3π4,2π],
∴sin(2x-π4)∈[-1,22],
∴当2x-π4=3π4,即x=π2时,f(x)max=22