证明:2-π/2≤(【x^2+x*cosx)/(1+(sinx)^2)】的从-1到1的积分≤2/3

发布网友 发布时间:2024-10-24 15:05

我来回答

1个回答

热心网友 时间:2024-10-25 09:17

原式=∫sinxdx+∫cosx/(1+sinx)^2dx,因为f(x)=sinx是奇函数,所以它在-2到2上的积分等于0,所以原式=∫cosx/(1+sinx)^2dx=∫1/(1+sinx)^2d(1+sinx)=-1/(1+sinx),把积分区间-2到2代入计算可得:原式=-1/(1+sin2)+1/(1+sin-2)=1/(1-sin2)-1/(1+sin2)=(2sin2)/(cos2)^2。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com