发布网友 发布时间:2024-10-24 09:38
共1个回答
热心网友 时间:2024-10-26 23:01
解:分别过点A、B作x轴的垂线,垂足分别为D、E,再过点A作AF⊥BE于F.
则AD‖BE,AD=2BE= ,
∴B、E分别是AC、DC的中点.
在△ABF与△CBE中,∠ABF=∠CBE,∠F=∠BEC=90°,AB=CB,
∴△ABF≌△CBE.
∴S△AOC=S梯形AOEF=6.
又∵A(a, ),B(2a, ),
∴S梯形AOEF= (AF+OE)×EF= (a+2a)× = =6,
解得:k=4.
故答案为:4.